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Abstract. We consider the time dependent Darcy problem in a three-dimensional ax-
isymmetric domain and, by writing the Fourier expansion of its solution with respect
to the angular variable, we observe that each Fourier coefficient satisfies a system of
equations on the meridian domain. We propose a discretization of these equations in
the case of general solution. This discretization relies on a backward Euler’s scheme
for the time variable and finite elements for the space variables. We prove a priori error
estimates both for the time steps and the meshes.
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1 Introduction

Let Q) be a bounded three-dimensional domain which is invariant by rotation around
an axis. The boundary I of this domain is divided into two parts I', and I',. We are
interested in the following model, suggested by Rajagobal [10],

orit+ait+gradp=f in Qx[0,T],

divit=0 in Qx[0,T],

=" on T, x[0,T], (1.1)
=g on T, x[0,T],

it =i in Q) attime t=0,
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where the unknowns are the velocity # and the pressure pj of the fluid. The data are
the quantities f, §, the pressure on the boundary , and the initial value of the veloc-
ity 1. The parameter « is a positive constant representing the drag coefficient. If the
problem is set in a domain which is symmetric by rotation around an axis, it is proved
in [3] that, when using the Fourier expansion with respect to the angular variable, a
three-dimensional problem is equivalent to a system of two-dimensional problems on
the meridian domain, each problem being satisfied by a Fourier coefficient of the solu-
tion. Here we are going to present the unsteady Darcy equations in three-dimensional
axisymmetric geometries, and we propose a discretization of this problem in the case of
a general solution, i.e., for the Fourier coefficient of order k, k€ Z. We recall that the same
problem are considered in [6] but in the case of an axisymmetric solution, i.e., only for
the Fourier coefficient of order k=0.

In this work, we assume that the boundary conditions and the external forces are in
general case. Axisymmetric problems without any assumption on the data can be trans-
formed into problems which are invariant by rotation see [2, Chap I, prop 1.2.8]. A natural
way for reducing axisymmetric problems on () to a family of problems on the meridian
domain (), which we will make precise later, relies on the use of Fourier expansions
with respect to the angular variable 6. Then, by using cylindrical coordinates, we can
write a variational formulation of this problem in (). We prove the well-posedness and
some regularity properties of the solution for such a system in the appropriate weighted
Sobolev spaces. Next, we propose a time semi-discrete problem that relies on the back-
ward Euler’s scheme. We prove that this problem has a unique solution and derive error
estimates. Concerning the space discretization, we consider a conforming finite element
method which leads to a well-posed discrete problem for which we prove a priori error
estimates.

An outline of the paper is as follows:

e In Section 2, we write a variational formulation of problem (1.1) in the case of an ax-
isymmetric domain, we prove its well-posedness and the error issued from Fourier
truncation.

e Section 3 is devoted to the description and a priori analysis of the discrete problem
in the meridian domain Q).

e In Section 4, we present some numerical experiments.

2 The two-dimensional problems

Let (x,y,z) denotes a set of Cartesian coordinates in R® such that €} is invariant by rotation
around the axis x=y=0. We introduce the system of cylindrical coordinates (r,0,z), with
r>0and —7t <0 < 7, defined by x =rcosf and y =rsinf. If I'y denotes the intersection
between ) and axis =0, then there exists a meridian domain Q in IR xR such that

QO={(r0,2); (r,z) €QUTy and —w<H<7}.
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For simplicity, we assume that I'g is the union of a finite number of segments with posi-
tive measure. The two-dimensional axisymmetric boundary I of the physical domain ()
is a Lipschitz-continuous boundary and is divided into two parts I', and I',, also with
Lipschitz continous boundaries. The part of the boundary fp has a positive surface mea-

sure. I', =I'\T, is the union of a finite number of surface elements. Setting T' =90\ T
and rotating I' around the axis r =0 gives back I', and Iy is a kind of artificial boundary.
We also introduce the two parts I', and I', =I'\T, of the boundary I'. The unit outward
normal vector iz on I is obtained by rotating the unit outward vector n on .

Each solution of the Darcy equations admits a Fourier expansion with respect to the
angular variable 6.

2.1 Fourier expansion

For any function & defined on (), we associate the Fourier coefficients of the correspond-
ing function v on (), defined for any k in Z by
r,9,z)e_ik9d9, o(r,0,z)=

ok (r,z) = k(r,2)e*.

1 /” 1

_—__ 0 —— 0
V2rJ-mn ( V21 iy
We also introduce the k-dependent operators grad, p and diviv defined respectively on

scalar functions p and on vector fields v by

ik 1 ik
2gradkp:<8,p,l7p,azp) and divkvzarv,—l—;vr—k%vg—kazvz.

It is checked in [2, IX.1] that (#, ) is a solution of problem (1.1) if and only if the pairs
(uy,pr), k€ Z, are a solution of the system of two-dimensional problems

druk +-auk +grad, p* = £ in Qx[0,T],

diviuf =0 in Qx[0,T],

p*=pk on T, x[0,T], (2.1)
uk-n:gk on I';,x[0,T],

uk:ulé in Q) at t=0.

We now describe the weighted Sobolev spaces which are needed for the variational for-
mulations of these problems, next we write these formulations and we proove their well-
posedness.

2.2 The weighted Sobolev spaces

According to [3, Section I1.2], we introduce the spaces (note that the use of Fourier expan-
sions leads to complex-valued functions)

L’,(Q)= {Z):Q — C measurable; / lo(r,2)[*rttdrdz < +oo}.
0
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Next, we consider the following spaces

H{(Q)={veL}(Q); ,veLI(Q) and 9,v€LF(Q)},
H%O(Q):{qull(Q); g=0 on rp}.

We also need the spaces V/}(Q) and V[, (Q) defined by
Vi (Q)=H{(Q)NL21(Q), Vi, (Q)=V{ (Q)NH],(Q).

All these spaces are provided with the norms which result from their definitions.

For any k€ Z, we denote by H (1k) (Q)) the following spaces

L[ HYQ) if k=0,
H<k>(9)—{ VI(Q) if [K|>1,

provided with its norms and seminorms

1 1
2 2 2 2 2 2 2 2
ol = (10 gcen kP llellEz o) and folig 0y = (10l + kP 10l )

We also define their subspaces H(lk) J(Q)=H (1k) (Q)NH],(Q). Note that the equivalence of
the norm ||| HY, (0) and seminorm || H}, (@) ON H(lk) ,(Q2), which is obvious for k #0, also
holds for k=0 (see [3, Theorem I1.3.1]).

1
Let us introduce the space H (2k) (T'p) of traces of functions in H (1k) (Q2) onT,. The trace

on I', is defined in a nearly standard way see [2, Section 2]. We use the whole scale of
Sobolev spaces Hj(I';), s >0, as defined in [3, Chapter IT] from

L3(T,) = {g:Fu — R mesurable; /r ¢ (T)r(t)dr < +00},

where r(T) denotes the distance of the point with tangential coordinate T to the axis r=0.
The trace operator: v—vjr, is continuous and surjective from H;*1(Q) onto HTF% (Ty),
s >0, and in particular from H;(Q)) onto Hl% (T,) and also from V}'(Q)) onto the same
space Hl% (Ty), see [3, Chapter II].

2.3 Variational formulation of the two-dimensional problems

1
We assume that the data (f*,pf,g") belongs to L?(0,T;L3(Q2)%) XLZ(O,T;H(Zk)(Fp)) X
L2(0,T;L%(T,)) and the datum u§ belongs to L3(Q)3. Then, the Fourier coefficients
((uk, ")) vz Of a solution of problem (2.1) are a solution of:
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Find (u*,p*) in H(0,T;L3(Q)%) x L*(0, T; H}

o (€2)) such that

u*(,0)=uf in O, (2.2a)
forae. t, 0<t<T, pk(-,t) = p'g on T, (2.2b)
and
Yoe L%(Q)g’, (atuk v)+aa (uk v) +b'{(v,pk) = (fk,ﬁ)l, (2.3a)
Ve Hy, (Q), ¥ q) / & 7)dr, (2.3b)

where the sesquilinear forms a; (+,-) and b¥(-,-) are defined by:
a1(u,0)=(u,0), :/ u(r,z)-o(r,z)rdrdz,
0
v (v,p) = (7,grad, p); :/ 0(r,z)-grad, p(r,z)rdrdz.
0

Then, the system made by all problems (2.2a)-(2.2b)-(2.3) has a solution (uk,pk )kez in the
product space ITxezH' (0,T;L3(Q)3) x L? (O,T;H(lk) Q).

These forms are obviously continuous on L#(Q)3 x L3(Q)® and L?(Q)* x H (1k) (Q), re-
spectively. Note that the formula b_ll‘(v,p) =b;%(7,p) holds and that the kernel

V(@) ={oeL}(Q)%; ¥pe Hiy, (Q), bi(v,p) =0},
is characterized by
Vi(Q)={veLi(Q)’ divyo=0 and v-n=0 on T,}. (2.4)

Lemma 2.1. The pression on H(lk) (Q)) vanishes a.e. on the axis T'g in a very weak sense.

Proof. If (r,), denotes any sequence in [0,1] which tends to 0, then it is a Cauchy sequence
and satisfies

T'm
P02 =P ) =2 [ p(r2)@0p) (r2)dr
'n
Integrate with respect to z on I'y, we obtain

1P () 12 — 1P (Fns2) 12 =2 p(r,2)(3,p)(r,z)drdz.
(To) (To) ToJr,

Using the Cauchy-Schwarz and Young’s inequalities, we obtain

lp(ra 2120y = 1P () 1 T2y

i 2 -1 % Tm 2 %
< / / p(r,z)r drdz / / (0,p) (r,z)rdrdz)
Fo Tn ]"O Tn
< / /m (r,2)r 1drdz+/ /m(arp)z(r,z)rdrdz>,
To ”
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yields that (||p(ru,z) Hiz (Ty) ), is also a Cauchy sequence. Hence, it tends towards a limit.

Since p? is integrable for the measure r~drdz, this limit is equal to 0, so that the function
p vanishes in r =0. However the trace is defined in a very weak sense and should be
cautiously used. O

As standard for saddle-point problems (see [7, Chapter I, Theorem 4.1]), the well-
posedness of problem (2.2a)-(2.2b)-(2.3) relies on the ellipticity of a; (-,-) and on an inf-sup
condition of Babuska and Brezzi type on the form b%(-,-).

Lemma 2.2. There exists a constant B > 0 independant of k such that the following inf-sup
condition holds

by (v,9)
VaeHy.(Q),  sup 17_51qu1 : (2.5)

verz(ay 1?llz0)

Lemma 2.3. There exists a constant a' independent of k such that, the following ellipticity prop-
erty holds

Vue L3O, ayuun)>aful o)
We refer to [4, Theorem 2.4], for the detailed proof of the next Theorem.

1
Theorem 2.1. For any data uf; € L2(Q)3, f* € L2(0,T;L3(Q)%), pf € LZ(O,T;H(zk)(I"p)) and

g* € L2(0,T;L3(Ty)), the unique solution (u¥,p*) of problem (2.2a)-(2.2b)-(2.3) belongs to €
HY(0,T;L3(Q))3) x L2(O,T;H1k) (Q)) and satisfies the a priori estimate

(
|«
HY(0,T;L3(Q

= (E

2.4 Fourier truncation

HP L2(0,T;HY, (Q))

Hf

soraan P prod Hg(Hlmzrm). 2.6)

1
With each (f*,pk¢%) in LZ(O,T;L§(Q)3)><L2(0,T,~H(fk)(r,,))><L2(0,T;L§(ru)) and uf €
L2(Q)3, we associate the unique solution (u*,p*) of problem (2.2a)-(2.2b)-(2.3), and we

define the three-dimensional functions # and p by

it(r,0,z) = uk(r,2)e™,  p(r,0,z) Z pk(r,2)e™®.

7
V2 TTkez ez

It is now readily checked that the corresponding pair (i1, p) is the only solution of problem
(1.1), so that the Darcy problem is fully equivalent to the problem (2.2a)-(2.2b)-(2.3), k€ Z.
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Remark 2.1. In the case of axisymmetric data f, p, and ¢, i.e., f;, fo, f-, pp and g are
independent of 6, all Fourier coefficients of (i1, ) vanish but those of order zero. We refer
to [6] for a slightly different formulation of the problem in this case.

In the case of general data f, Py and ¢, the idea is to solve only a finite number of
two-dimensional discrete problems. So, we fix nonnegative integer K, and we introduce
the pair (iix, Pxc) which is obtained from (i1, ) by Fourier truncation:

iy (r,0,z)= u*(r,2)e®,  pr(r,0,2)

r,z)e'*?. (2.7)
=L -7 B

We intend to evaluate the distance between (it,) and (iix,px) in appropriate norms.
Estimating this distance relies on some results introduced in [5]. We introduce the spaces
H™5(()), (see [5, Section 11.4.b])

H’”’s(()):{zﬁeH’”(()); ks e H"(Q), Ogﬁgs},

and evident extension of spaces defined on each part of 9}, where m € R and s >0. Note
that H™%(()) coincides with H™((}).

From [5, Theorem I1.3.1], we obtain the following characterization of H"*(Q)) by
Fourier coefficients.
Lemma 2.4. For any nonnegative real number s and any integer m, the norm

1

2 2
3 (1+ k27 o]
kez H{iy (@)

is equivalent, on H™*(QY), to the norm induced by the definition of this space.

Where H?k)(()) =L3(Q) for |k| >0, and H(lk)(()) =V}(Q) for |k| >1.

Remark 2.2. When m is a negative integer, we denote by the space HEZ) ,(Q) the dual
space of H (7<3ﬂ (Q)NH; "(Q) and provided with the dual norm.

Now, we are in a position to prove the corresponding “anisotropic” regularity result.

Proposition 2.1. For any nonnegative real number s, the mapping which, with data
(f,Pp,i10,8) associates the solution (it, ) of problem (1.1) is continuous from :

L2(0,T;HY(€2)°) x L2(0,6;H (Tp)) x HY (Q0)° x HY (0, H () NH. (€2))
into H'(0,T;H%*(2)3) x L2(0, T; H# (QY)), i.e
||”||H10TH0>( +||P||L20TH“(Q))

+||f oy Pl

<elloll o<y L2(0,T;HOs (€ L2(0,6HZ* +||gHH1 osH (@) () (28)
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Proof. From (2.6), we have
H(0,T;HY, (0

J«
()

<C<HMOH Hf HO4H, (o)))'

Multiplying the square of each term by (1+ |k|?)* and summing over k with k € Z, we
obtain for any positive integer s

HP L2(0,T;Hb, (Q))

e +e

2 0 2
L2(0,T;H, (O L2(0,6H2, (T))

2
1_|_ k 2\s uk + 1+ k 2\s
é(H)\MMwmé(H) S
2
<c 1+ k%) (|u +Y (1+|k
<k§( | | ) ‘ H‘()>(Q)3 kg ’ ’ ) L2(0 T;H‘() >(0)3)
+ Y (1+]k?)° LY (14K >
kg( k1% P L2(0,t,-H(2’k)(r,,)) kg | ’ ‘Hl 0,5H )(Q))
Then, Lemma 2.4 yields the desired result. O

Theorem 2.2. Let s be a nonnegative real number and assume that the data
(F, Poito,§) €L2(0, T;HO* (€0)%) x L2(0,;H2 (I'p) ) x HY (Q2)> x H'(0,6; H~ 1 (C1)NH,;, (€)).

Then, the following bound holds between the solution (it,p) of problem (1.1) and its truncated
Fourier series (ityc,Pi) :

[ =t || oo, 20y + 1P — PICHLZ(OTHI(Q))

< (ol

L2(0,T; HOs(€Y) +HprL2 0,4;H?" (rp))+“g’|Hl(0lt;H1'5(0)ﬂH1‘<3(0))>'

Proof. From the definition of itx in (2.7), we obtain

rwwms<zu\ op S X HREY ], (kR
k[ >K K[> K ()

Since |k| > K and s >0, then (1+ |k|?) ™ < KX~% and we have

2
n—1il (1+]k ‘ .
[ S M T

When we use Lemma 2.4, we deduce that

=t | 2 eayp <K [l pos - (2.9)
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The same arguments lead to
|0 (1 — ”IC)HLZ 3<lC % HatuHHOc (2.10a)

1= Pl ey < 2P sy (2.10b)
Integrating (2.9), (2.10a) and (2.10b) between 0 and ¢, yield

|5 — ”lCHHl 0,T;L2(C) +HP PICHLZ(OTHl(()))
<K= (gt (0,T;HO5(C2) +HPHL2(OTH“ )
Finally, from (2.8) we obtain the desired result. O

Remark 2.3. Since the Fourier coefficients of the data f, § and i, cannot be computed
explicitly in most practical situations, we introduce the nodes 0,, = %, -K<m<K,
and we define approximate Fourier coefficients by the following formula, for —K <k<IC,

(same definition of g% (r,z) and pf,(r,z))

Ver  k _
f’fk(r,z) 21C+1 Z erm,z) ik

3 The discrete problem and its a priori analysis

We split the discretization into two steps: first a semi-discretization in time, and next the
full discretization. At each step, we prove a priori error estimates.

3.1 The time semi-discrete problem

We introduce a partition of the interval [0,T] into subintervals [t,_1,t,4], 1 <n <N, such
that 0=ty <t; <--- <ty =T. We denote by T, the time step t, —t,_1, by T the N- tuple
(11,72,--+,7v) and by |7| the maximum of the 7,, 1 <n < N. The time discretization of
problem (2.2a)-(2.2b)-(2.3) relies on the use of a backward Euler’s scheme. Thus for all

1
k€ Z, for any data (f*,pk) € CO(0,T;L3(Q)%) x CO(O,T;H(fk) (Tp)), §£€C°(0,T;L3(T,,)) and
ul € 12(Q)3, satisfying diviul =0 in Q, we consider the following scheme:
Find (1" )g<n<n € (L2(Q)*)N T and (p")1<p<n € (H(lk)(Q))N such that
W=y in O, (3.1a)
Vn, 1<n<N, pk” = p’é” on I'p, (3.1b)

VoeL3(Q)3 and Vg€ H(lk)Q(Q),

(1" B)1 +a, (4", 5), = ("1, B); — 7, (T, grad, p* "+, (7)1, (3.2a)
)= (g"q) (3.2b)
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where f' = f*(-,t,,), §" = g* (-, t,) and pf" =pk(- ty).
We refer to [6, Theorem 3] for the detailed proof of the next Theorem.

1
Theorem 3.1. For any data (f*pf) € CO(O,T;L%(QP)XCO(O,T;H(Zk)(Fp)), gk €

CO(0,T;L3(Ty,)) and uk € L2(Q)3, satisfying diviul =0 in Q, problem (3.1a)-(3.1b)-(3.2a)
has a unique solution (uk”,pk”) such that ¥n, 0<n <N, uk" € L%(Q)g’ and Vn, 1<n <N,
P e Hpy (Q).

Moreover the sequences of velocities (u")o<,<n and pressures (p*)1<,<n satisfy the fol-

lowing estimates for a constant c independent of n and the time step T,

n

Nl—=

Hukn L%(Q)3§C<Hulé L%(Q)3+<n;le(kam ; Q)3+Hpﬁm‘;%k)(r >) +Hg L3(Ty)
+ g0 Lm)), (3.3a)
n km __  km—1 12 1
(m;Tm = o L%<o>s>2§C(H”g e ] P
n 1
St )
n gkm_gk,mfl 2 1
n 1
(n;lrm‘pkm ;k)(Q))zgc(Hgk(-,O) L%(ru)+Hu16 L3(Q)3
n 1
(0 L 17t ™ )
n km _ okm—1 (|2 1
+(,,;1Tm g Ti " L%(ru)y), (3.30)

Remark 3.1. Let I'l; denote the operator which associates with any continuous function
v € [0,T] the piecewise constant function I'T;v equal to v(t,) on each interval [t,_1,t,],
1<n <N. Then, estimate (3.3a) is equivalent to the following

ubn

sup
0<m<n

+H

L2(Q)3 (H Hg L2(Ty) Lz(oltn;L%(Q)S)

nal],

L2(0,t,; H(’Z 2 (L)) Lz(o,tn;L%(ru)))'

In order to state the a priori error estimate, we observe that the family (e")o<,<n,
with e =u*(.,t,) —u!" satisfies e =0 and also, by integrating 9;u* between t,, 1 and t,
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and subtracting (3.2a) from (2.3) at time ¢,

Voel2(Q)3,  (e,9)1+at, (e, 7)1 = ("1, D)1 + 14 ()
—Tnbﬁ(v,p (-t n)—pk”), (3.4)

VaEH},,(Q), b (e",q) =0

where the consistency error " is given by

1 b
efn=— (9¢1%) (s)ds — (9,uF) (£,).
Tn th—1
We assume that the velocity #* of problem (2.2a)-(2.2b)-(2.3) belongs to H2 (0, T;L3(Q2)%),
then we can conclude this section, by recalling the main results concerning the a priori
estimates, which are proven in [4, Proposition 3.2 and Corollry 3.1], for 1 <n <N:

Q) H ok

H2(0,t,;L2(Q2)3)

1
<=l
L3(Q)3 3zx’ |

2 3
o) =0

(Lnlet-rml, o) < Jare

3.1.1 The three-dimensional error

km __ ek,mfl

— T H2(0,ty;L3(Q)3 )’

(i) ( Y T

NI—=

H2(0,t,5L2(Q)3)

With each (£, pkn, ¢k uk), we associate the unique solution ( ,p*) of problem (3.1a)-
(3.1b)-(3.2a), and we define the three-dimensional functions #" and p" by

1
i"(r,0,z) = = Y u"(r,2)e™,  p(r,0,2) = — — Y P (r,z)e™.
v kez UN T4

v

We fix the nonnegative integer X and we introduce the pair (it} p}-) which is obtained
from (i1",p") by Fourier truncation:

mlk;]cuk”(r 2)eR®, pi(r,0,2) = \/—_ Z z)e'k?. (3.5)

We intend to evaluate the error between (it", ") and (i}, pk-) in appropriate norms.

Proposition 3.1. Let s be a nonnegative real number and assume that the data ( f pb, 0.8)
belongs to CO(0,T;HO%(€2)3) x CO(0,¢;Hz*(I'p)) x HS(€2)3 x CO(0,£;H 15 () NH L (CY).
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Then the following estimates hold
|| —u/c”Lz((“;)s§C’C_S(Hﬂ0||Ho,s(‘ GO -

18" 1 (Zm il

Nl—

e IR ))7), @6a)
" !
(X wllp" =l ) Scfc—s(||ﬁo|\Ho,s(m3+|\g<-,o>||H,15mmH @
m=1
n 1
2 2
(L (7 A W A N by
+(Xn:Tm g g )%) (3.6b)
m=1 Tm H-15()NH; 1 (€2)
2
(5 ] =t f
m=1 Tm 20(%)\3
L2(CY)

< ek (it s s + 1320 153

+(anrm

m=1

uy)
=l
3
w—
—
—c
il
=
—
—
NI=

sm_ gm—1 |2
§ =8
Tm

1
Hl/S(O)mHk}(O)) 2 )

(3.60)
Proof. From (3.3a), we have

H

1
Hukn H?k)(n)sgcwug‘ ?k>(0)3+(irm<kam‘H? +HP HHz)(Fp)>>2

e o 0, o)

Multiplying the square of each term by (1+|k|?) , summing over k with k€ Z, and using
Lemma 2.4, we obtain for any positive integer s

n 2
o112 o (12 Lm o |2
I i e (0 it 32 |7 1P, )

on (|2 g 2
+1g" ||H—1,S(())mH1—01(Q)+ 18(-,0) HH*LS(())QH;}(()))‘ 3.7)
The definition of ity in (3.5), yields
2
" = |2 g0 < Y || -
K>k H Hiy (Q)°

Since, (1+|k|?)~* <K ~2 and from Lemma 2.4, we obtain

3" =i || 2 cqyp S K187 ros ()3
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then (3.6a) follows from (3.7). To prove estimates (3.6b) and (3.6c), we proceed by the
same arguments as previous. U

3.2 The time and space discrete problem

We now describe the space discretization of problem (3.1a)-(3.1b)-(3.2a). For each 1, 0 <
n<N, let (T,), be a regular family of triangulations of () by closed triangles, in the usual
sense that

e for each /1, Q) is the union of all elements of 7,

both fp and T, are the union of whole edges of elements of 7,

e there exists a constant ¢ > 0 independent of /, n and T such that, for all T in 7T,
Z—; <o, where hr is the diameter of T, and pr the diameter of its inscribed circle,

e 1, is the maximum of the diameters of the elements of 7,

o &, is the set of all edges e of elements T of 7y,

° Sgh is the subset of &,;;, which elements are not contained in 9(),
e V), is the set of vertices of the elements of 7,

° Vgh is the subset of V,;, which elements are inside (),

° Vbh = Vnh\VShi is the subset of V,;, made of boundary vertices.

n

For each triangle T and nonnegative integer ¢, we denote by P;(T') the space of restrictions
to T of polynomials with degree </. At each time step, the discrete space of velocities is:

X (Q) = {0, € LT(Q)%; VT € Ty, vn|r € Po(T)?},

its interpolation operator is the orthogonal projection operator I1,;, from L3(Q)% onto
X, (Q)) associated with the scalar product of L3(€2)® and verify, for every 0<s<1

Voe Hyy (Q)°,  |lo—TLuo| 2 (qp <Ch;, 1ol s, (- (3-8)

We assume that the pressure is continuous whence the choice of discrete space as pro-
posed in [1]:

Mo () = {L]h €H{y) (Q); YT € Tan, qul Gpl(T)},

its degrees of freedom are defined at the nodes of V,;;, and its interpolation operator i, :
H (1k) (Q) = My (x) (Q) is the standard Lagrange interpolation operator at the nodes of V,,;

with values in M,,j,x)(Q2) and satisfies, for every T<s<1

Vg€ HyiH(Q), 19—ty () < Chullall - (3.9)
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Finally, to approximate functions with zero trace on I'y, we set

M?lh(k) Q)= {Qh € Mun(x) (Q); g,=0 on l"p}.
3.2.1 Variational formulation of the discrete problem

For every data (f¥,p)rez €CO(0,T;L3(Q)) x C°(0, T; H(SJ32 (Tp)),s>%,8"€C0(0,T;L3(Ty))
and uf € L2(Q)3 satisfies diviuf =0 in Q, the discrete problem constructed by the Galerkin

method from (3.1a)-(3.1b)-(3.2a) reads:
Find (#f")o<n<n € (X ()N and (pf")1<n<n € (M ()N such that

ul =TI, u®® in Q, (3.10a)
Vn, 1<n<N, p{"=inpt" on T, (3.10b)
Vo, € Xun(Q), ()", 01)1+ 0, (uf"5y)1+ b5 (01, ")
= (" o)+ T (B0, (3.10c)
Va5 € My (Q), b (uf" ,qh)=<g ’qh>ru' (3.10d)
Lemma 3.1. We have the following inf-sup, for all k€ Z,
Van € Ml (Q),  sup Mz 9nl a3, (- (3.11)

0, € X (Q) thHL%(QP

Theorem 3.2. For every data (f*,pf) in C°(0,T;L3(Q)3) x C°(0,T; H?JSZ (Tp)), where s> 1,

¢ C%(0,T;L3(T,,)) and uf € L2(Q)3 with diviul =0 in Q, problem (3.10a)~(3.10b)-(3.10c) has
a unique solution (ul",pk") such that

Vn, 0<n<N, wuf"€Xu(Q) and p§" € My (Q).

Moreover, the sequence ((u}",p")) ., Satisfies the following estimates

Huﬁ” L%(Q)SSC<HMI(g L%(Q)3+(Zn:Tm(“fkm 2 Q)3+Hp§m‘j{fgé(r,,)>)%
+| g0 ) +g* ; m) (3.12a)
(En )
m=1 T 2(Q)
<[] 0, + (1 I 1))
n m m—1 (|2 1
+<Z_:Tm g* —Tik’ ' L%(l"u))z), (3.12b)
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1
<e(ibl gt IOy + (Z (g1t o 8 )
n km __ Skm—1 2 1

Proof. Applying respectivelly estimates (3.3a), (3.3b) and (3.3¢) to problem (3.10a)-(3.10b)-
(3.10c) and using the fact that HHOhuS H 12(00)3 < Hu’é HLZ(Q)3' we obtain respectivelly (3.12a),
1 1

(3.12b) and (3.12¢). O

3.2.2 A priori error estimates
To establish error estimates, we insert in the error equation an arbitrary element 45" €
Min(r) (Q) and we obtain for 1<n <N,

Vo, € Xun, (thukn - uﬁnzﬁh)l +aTy, (thukn - ulﬁnzﬁh)l +Tnb11< (vh/qI];n — Pl];n)

= (""" =" )1 — T (o, P — g, (3.13)

with the starting value HOhulé —u’;lo =0 in . We refer to [6, Propositions 1 and 2], for the
detailed proof of the next Propositions.

Proposition 3.2. We suppose that uf € ka)(0)3 and the solution (u*",p*") belongs to

ka)(ﬂ)g’ X Hf;sl(ﬂ), for 1 <s<1.Thenforalln, 1<n<N
Hukn_ulén
L3(Q)3
< 4 h 2s km 2 % - o )s km 3.14
—C<(ZT’”( )= |P ‘HSH(Q)) +Z( m)*||u ‘Hs (0)3)' (3.14)
m=1 (k) m=0 (k)

Proposition 3.3. If the assumptions of Proposition 3.2 are satisfied, the following a priori
error estimate holds forn, 1<n <N,

1

— Ty (" — ") — (u ! —w" 1) +grad, (P pj")

" 130y
<e((( 32 o) [ )%+anrm(hm)s o™ () ). @15)
=W o) T Hi (O o)

The next result gives another error estimate where both velocity error and pressure
error can be obtained separately. This is very practice in numerical point of view.
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Corollary 3.1. Assume that all elements of T,,_1 , are contained in elements of T,,, 0 <n <N.
If assumptions of Proposition 3.2 are satisfied, estimate (3.15) still holds with its left-hand side
replaced by

1 iy
_th((ukn ﬁn) ( kn—1__ hn 1))

‘ T

n

o+ |[sradi(p—pi

12(Q) L3(0)

3.2.3 The three-dimensional error

Now we will back to the three-dimensional problem. For this, once the discret coefficients
(u’];”,p’];”), k| < KC, are known, the basic idea is to define the three-dimensional discrete
solution

i (r,0,2)=—= Y u"(r,z)e", (3.16a)
V27T =k

pen(r8,z)=—= Y pi"(r,z)e™. (3.16b)
V27T =k

Indeed, bounding the error between the solution (i1", ") and this solution relies on the
triangle inequality

# =2y <18 =kl 2oy k=l

The first term in the right-hand side of this inequality is evaluated in Proposition 3.1,
while the second one obviously satisfies,

y y 2 2
=ity = L o=
K=K Hiy(Q)
Since (1+ |k|?)° >1, we obtain for any real number s, % <s<1
vn v ki’l
iy — ity , < 14 [k[?)8 uy
HL2 kgz H?k)(Q)?i

and its analogue for ||p"— P n | ()" So the following results are easily derived from
Propositions 3.2, 3.3 and Lemma 2.4.

Theorem 3.3. For any % < s <1, assume that the data (]”,ﬁh,ito,g“) belongs to

CO(0,T;HO (2)3) x CO(0,5;H25(I',)) x HO (€2)3 x CO(0,,H 1 (Q) N H;. (€1)).
If assumptions of the Proposition 3.2 are satisfied, the following error estimate holds between
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the solution (it",p") and (‘v‘nIC,h'f’kﬁ defined in (3.16): for n,1<n <N,

n
" =it 2y < ( (3 ) 15 ||Hs+m)+2 PP

m=1

K7 (ol osgeys 180l ir-1s ey sy + 18 - reynpri ey
1
2

+H(X TM<Hf [ ); ) (317)

Theorem 3.4. Assume that all elements of T,,_1 , are contained in elements of Ty, and that for
any real number s, % <s<1, the data (f,Pyp,ito,$) belongs to

CO(0,T;H® (€3)%) x C°(0, 5 H2* (I'p)) x HOS(€2)3 x CO(0,H 15 (C0) NH (€})).

If assumptions of Proposition 3.2 are satisfied, then the following error estimate holds between
the solution (i1",p") and (it”,clh,ﬁ%lh) defined in (3.16): forn,1<n <N,

() 2| ~Picnlln () 1
<ol (2 w1 i)+
" 2 )" g ry )+ (ol e+ 1800 -1y
+<,§_:1T’”(Hf ‘ms HH%’S(fp)—}_Hgn”H_l'S(é)mHl_ol(o)))%)
n v <M — 2 1
+<mz_:17m —" les(())ﬂHlol(f))>)%)' (3.18)

4 Numerical experiments

In this section we numerically investigate the approximation of two, cylindrically sym-
metric Darcy flow problem. These experiments are performed using FreeFEM++-
Software [8] on an example with a known solution. Rates of convergence in time and
space of the approximation to the known solution are computed and compared with
those predicted by theoritical error estimates.

The order of convergence (time or space) is estimated by dividing the errors above,
computed for two sets of parameters where the axisymmetric Darcy’s equation is com-
puted in the meridian domain Q = (0,1)x (—1,3) . For both simulations, I, coincides

272
with the border 0x (—3,3) and I', =0Q/T,.
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4.1 Time accuracy

The first test is used to validate the time accuracy. In order to evaluate the convergence
rates, we consider the exact solution given by

1
u(r,z)= (rz,z —22) sin(rtt),
2
p(r,z) =rzcos(mt)+(2r+3z) (P +t—2) — 3 0<t<1.
Hence, the suitable forcing functions f, ¢ and p; are obtained using this exact solution in
Darcy’s equation.

Table 1: Time accuracy.

T ||u_”upp||L%(Q)3 O(u)
0.1 0.0081762 —
0.05 0.00417279 0.97

0.025 0.00210943 0.98
0.0125 0.00106205 0.99
0.00625 0.000535709 0.99

In Table 1, we plotted the L% error of the velocity, between the numerical solution and
the exact solution at final time T=1 for different time steps 7. We observe that the order of
accuracy in time equal to 1 which is in concordance with a priori error estimate obtained
above, when the backward Euler time differentiation is used. A plot of the exact and
approximate velocity field #, and the pressure p are given in Figs. 1 and 2, respectively.

Figure 1: Velocity: Exact in the left and approximate solution in the right.
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Exact Presaure Approsicte Pressure
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09166667 0.4166667 T Ee03512 0416667

Figure 2: Pressure and isolines: Exact in the left and approximate solution in the right.

4.2 space accuracy

The example considered now is a modification of the Taylor-Green vortex flow problem,
a prototypal problem in Navier-Stokes flow approximation. The exact velocity and pres-
sure are given as follow: (t€[0,1])

u(r,z)= (t(—rcos(m’)sin(nz)),t < - %cos(nr)cos(nz) —I—rsin(nr)cos(nz)) ) ,
p(r,z) =sin(mz)(—cos(rtr)+2mrsin(rr)) +t—1.

To estimate the space convergence rate, we have used several mesh sizes h. We recover
a convergence order for velocity-pressure that decreas as / tends to 0, which is confirm
theoretical estimate obtained above. Table 2 shwos that the convergnce order is ~ 1.

Figs. 3, 4 and 5 represent the exact and approximate velocity, velocity field and pres-
sure.

Table 2: Space accuracy.

h [lu—uappll 25 | lIgrad (p—papp) 123 | O(u) - O(p)
0.149071 0.0866377 0.285598 _—
0.0786165 0.0331702 0.143125 1.5-1.08
0.0408695 0.0152626 0.0710153 1.19-1.07
0.0207535 0.0065823 0.0356921 1.24-1.05
0.0114654 0.0030579 0.0178266 1.29-1.17
0.00557817 0.0015102 0.00891096 0.98 -0.96
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Ty

Figure 3: Velocity: Exact in the left and approximate solution in the right.

Figure 4: Vector Fields of the Velocity : Exact in the left and approximate solution in the right.
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Exact Pressurs
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Figure 5: Pressure and isolines: Exact in the left and approximate solution in the right.
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