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Abstract

Background/Objective: Sacubitril / Valsartan are a combination drug approved for heart
failure treatment, known to enhance natriuretic peptide activity and inhibit the renin—
angiotensin—aldosterone system (RAAS). While its clinical efficacy is well-established, its
broader impact on human metabolism remains insufficiently characterized. This study
aimed to explore the time-resolved metabolic changes induced by Sacubitril / Valsartan
in healthy individuals using an untargeted metabolomics approach. Methods: Fourteen
healthy male volunteers received a single oral dose of Sacubitril / Valsartan (200 mg; 97.2 mg
Sacubitril and 102.8 mg Valsartan) across two phases separated by a two-week washout
period. Plasma samples were collected at eight individualized time points based on phar-
macokinetic profiles. Metabolites were extracted and analyzed using high-resolution liquid
chromatography—mass spectrometry (LC-QToF HRMS). Data processing included peak
alignment, annotation via HMDB and METLIN, and statistical modeling through mul-
tivariate (PLS-DA, OPLS-DA) and univariate (ANOVA with FDR correction) analyses.
Results: Out of 20,472 detected features, 13,840 were retained after quality filtering. A
total of 315 metabolites were significantly dysregulated (FDR p < 0.05), of which 31 were
confidently annotated as endogenous human metabolites. Among these, key changes
were observed in the pyrimidine metabolism pathway, particularly elevated levels of uri-
dine triphosphate (UTP) associated with cellular proliferation and metabolic remodeling.
OPLS-DA models demonstrated clear separation between pre-dose and Cmax samples
(R%Y = 0.993, Q* = 0.768), supporting the robustness of the time-dependent effects. Con-
clusions: This is the first study to characterize the dynamic metabolomic signature of
Sacubitril / Valsartan in healthy humans. The findings reveal a distinctive perturbation
in pyrimidine metabolism, suggesting possible links to drug mechanisms relevant to
cardiac cell cycle regulation. These results underscore the utility of untargeted pharma-
cometabolomics in uncovering systemic drug effects and highlight potential biomarkers for
monitoring therapeutic response or guiding precision treatment strategies in heart failure.
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1. Introduction

Sacubitril / Valsartan are widely used to improve clinical outcomes in heart failure
patients. This drug combination significantly reduces mortality and hospitalization rates
primarily by impacting the renin—angiotensin—aldosterone system (RAAS) and natriuretic
peptide systems. Acting as both a neprilysin inhibitor (Sacubitril) and an angiotensin II
receptor blocker (Valsartan), this dual mechanism provides potential synergistic benefits
compared to targeting either pathway alone [1]. The RAAS orchestrates key physiological
processes in cardiac, vascular, and renal function by regulating vascular tone and fluid
balance [2], whereas natriuretic peptides oppose these effects and support vasodilation
and natriuresis. ANRI represents a significant advancement in the management of chronic
heart failure (HF), particularly over the past two decades. This angiotensin receptor—
neprilysin inhibitor (ARNI) has demonstrated favorable effects on cardiac function in
patients with concomitant renal impairment and HF. The United Kingdom Heart and
Renal Protection-III (UK HARP-III) trial reported that Sacubitril/ Valsartan produced renal
outcomes comparable to those of irbesartan, including preservation of kidney function and
reduction in proteinuria. Additionally, it resulted in further reductions in blood pressure
and significantly improved cardiovascular biomarkers such as high-sensitivity troponin
I and N-terminal pro-B-type natriuretic peptide (NT-proBNP), highlighting its potential
to modulate both cardiac and renal risk profiles in patients with chronic kidney disease
(CKD) and HF [3].

Despite well-documented clinical efficacy [2], knowledge of the drug’s metabolic ef-
fects remains limited. To address the limited understanding of the metabolic impact of Sacu-
bitril/ Valsartan in humans, recent studies have begun to explore its pharmacometabolomic
profile in clinical populations. In a prospective metabolomics study of patients with end-
stage renal disease (ESRD) and heart failure (HF), investigators evaluated serum samples
collected before and after treatment with Sacubitril / Valsartan. Patients were stratified based
on clinical response into good responders (GRs) and poor responders (PRs). Metabolomic
profiling identified nine significantly altered metabolites between the GR and PR groups
prior to treatment initiation, suggesting potential early biomarkers of drug responsiveness.
Notably, three lysophosphatidylcholine (LysoPC) species demonstrated strong predictive
performance based on machine learning algorithms, including random forest and sup-
port vector machine models. Furthermore, expression of the enzyme phospholipase A2
group IVA (PLA2G4A), linked to LysoPC metabolism, was significantly upregulated in
the PR group. These findings imply that dysregulated lipid metabolism may impair ther-
apeutic efficacy of Sacubitril/Valsartan and highlight PLA2G4A as a possible target for
enhancing drug sensitivity in patients with ESRD and HF [4]. One study showed that
Sacubitril / Valsartan influence glucose and lipid metabolism in heart failure patients both
with and without diabetes mellitus, as well as the metabolism of natriuretic peptides [5].
This study is the first to characterize the acute pharmacometabolomic signature of Sacubi-
tril/Valsartan in healthy human volunteers, providing foundational evidence that the drug
modulates key biosynthetic and proliferative pathways. These findings could inform future
research into long-term effects, drug repurposing, and individualized treatment strategies
in heart failure management. Metabolomics is a comprehensive approach to analyzing
small molecules produced by cellular processes and offers a powerful means to illuminate
these effects [6-10].
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Pharmacometabolomics, which applies metabolomics to drug response, has demon-
strated utility in identifying biomarkers predictive of medication efficacy and in monitoring
pharmacological effects [11,12]. Prior metabolomics studies have investigated the impact
of various agents (e.g., metformin, dexamethasone) on healthy volunteers [13-15]. For
Sacubitril /Valsartan, work in rat models of chronic heart failure has identified alterations
in tryptophan metabolism and inflammation [16,17]. However, human data remain scarce.

Here, we used an LC-QToF-based untargeted metabolomics approach to elucidate
the kinetic metabolic changes associated with Sacubitril/Valsartan in healthy volunteers.
This metabolic profile will help in better understanding the pathways involved in this
treatment to map them out with potential side effects or alternative therapeutic targets for
drug repurposing.

2. Results
2.1. Clinical and Demographic Data of Study Subjects

Table 1 summarizes the clinical and demographic data for the 14 healthy male volun-
teers enrolled in this study twice with a two-week washout period. All biochemical test
results were obtained once at the screening stage before they became involved in this study.
Fasting blood sugar, urea, creatinine, sodium, potassium, aspartate transaminase (SGOT),
serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and total
bilirubin were within normal limits. Participant ages ranged from 23 to 51 years, and 50%
reported being smokers. None tested positive for ketones.

Table 1. Clinical and demographic characteristics of the 14 recruited subjects.

Clinical and Demographic Data (71:/[:22) ]gza‘:il:;:i Normal Range *
Age (y) 33.64 7.13 NA
Height (m) 1.70 0.07 NA
Weight (Kg) 77.86 10.00 NA
Smoker (%) 50% - 0%
BMI (Weight/Height?) 26.76 2.23 NA
Fasting Blood Sugar (mg/dL) 95.21 7.83 70.00-115.00
Urea (mg/dL) 30.66 5.69 10.0-50.0
Creatinine (mg/dL) 1.13 0.08 0.60 -1.30
Sodium (mmol/L) 141.07 1.53 135-153
Potassium(mmol /L) 4.27 0.45 3.50-5.30
Aspartate transaminase (SGOT) (U/L) 23.43 5.22 Up to 42
Serum Glutamate Pyruvate
Transaminase (SGP"IY) (U/L) 26.64 5.23 Up t0 50
Alkaline phosphatase (ALP) (IU/L) 103.64 26.30 40-150
Bilirubin Total (mg/dL) 0.44 0.12 Up to 1.40

* According to Jordan Center for Pharmaceutical Research (JCPR) and the Jordanian FDA regulations and rules.

2.2. Metabolomic Analysis

Metabolomics analysis was conducted in two phases involving the same 14 healthy
volunteers, with a two-week washout period separating the phases. Across both phase
samples, a total of 20,475 mass ion features were detected: 13,453 under positive ionization
and 7022 under negative ionization. Of these, 20,399 features were commonly detected
in both phases, as shown in the Venn diagram (Figure 1). Features with missing values
based on frequency in more than 80% of the study groups were evaluated (n = 13,840) for
further analysis.
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Figure 1. Venn diagram representing the count of shared and unique metabolic features between the
two experimental phases, following data filtering. The overlap of mass ions (1 = 20,399) detected in
Phase I (1 = 20,425) and Phase II (n = 20,437) under both positive and negative ionization modes, as
analyzed by Mass Profiler Professional (MPP) software.

A partial least-squares discriminant analysis (PLS-DA) was performed on 20,399 metabolic
features from 14 healthy volunteers who received two doses of Sacubitril / Valsartan at eight
time points: pre-dose, three intervals leading up to the maximum concentration (Cmax), the
Cmax itself, two intervals post Cmax, and 48 h post dose. As shown in Figure 24, the PLS-DA
plot distinguishes these sampling points clearly. Notably, samples collected near Cmax form a
cluster separate from those pre-dose and after 48 h, indicating distinct metabolic profiles that
reflect changes in drug availability over time.
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Figure 2. (A) PLS-DA plots of the metabolic profiles of 14 healthy subjects over two experi-
ments, showing distinct clustering at eight time points following two doses of Sacubitril/ Valsartan.
(B) OPLS-DA compares pre-dose (red) vs. Cmax (green) profiles, revealing a clear separation
(R%Y = 0.993, Q% = 0.768). Model robustness was evaluated using a 100-permutation test.

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was
applied to compare pre-dose vs. Cmax metabolic profiles across all 14 subjects. As shown
in Figure 2B, the model demonstrates a clear separation of these two time points (Q? = 0.768,
R?Y =0.993), indicating a robust and highly reliable capability to distinguish between the
metabolic states associated with drug administration.

One-way ANOVA with Tukey’s post hoc analysis (FDR p < 0.05) was performed on
13,840 features across eight time points, identifying 315 significantly dysregulated features
compared to background (Table S1). Fold-change analysis (>2) of these 315 features
between Cmax and pre-dose highlighted 258 features (235 upregulated, 23 downregulated;
Figure 3 and Table S2). After excluded exogenous metabolites such as Sacubitril (drug),
Valsartan (drug), and sacubitrilat (Sacubitril metabolite) Of these, 31 were successfully
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annotated as human endogenous metabolites (Figure 4 and Table S3), with 22 upregulated
and 9 downregulated.

(A)

Log2 Normalized Intensity Values
1

I T I T T T
Pre-dose Before Cmax1 BeforeCmax2  Before Cmax3 Cmax After Cmax1 After Cmax2 Post-dose

Group

(B)

Log2 Normalized Intensity Values

I I I I | I
Pre-dose Before Cmax1 Before Cmax2 Before Cmax3 Cmax After Cmax1 After Cmax2 Post-dose

Group

Figure 3. Metabolomics profiles of the 258 features meeting the >2 fold-change criterion between
pre-dose and Cmax. (A) A total of 235 upregulated features. (B) A total of 23 downregulated features.
The intensity of the color associated with the statistical significance, where the darker means the

most significant.
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Figure 4. Hierarchical clustering and heatmap analysis of the 31 significantly dysregulated en-
dogenous metabolites identified following Sacubitril / Valsartan administration in healthy subjects.
Metabolite intensities were normalized and visualized across eight individualized time points: pre-
dose, three time points before Cmax (before Cmax 1-3), at Cmax, two time points after Cmax (after
Cmax 1-2), and 48 h post dose. Clustering was performed using Pearson correlation distance and
average linkage to group both metabolites (rows) and time points (columns). Color-coding reflects
the normalized expression level of each metabolite: red indicates upregulation (positive deviation
from the median), green indicates downregulation (negative deviation from the median), and black
represents expression levels close to the median. The color range spans from —3.4 (green, minimum
relative abundance) to +3.4 (red, maximum relative abundance), as indicated by the color bar at the
top of the figure. Key dysregulated metabolites include uridine triphosphate (UTP), associated with
pyrimidine metabolism and cell cycle regulation. All pathway names and metabolite abbreviations
are fully defined within the figure or accompanying Supplementary Table.

2.3. Pathway and Functional Analysis

Seven metabolic pathways were identified among the 31 Sacubitril/Valsartan-
dependent metabolites (Figure 5 and Table S4). Notably, pyrimidine metabolism exhibited
the most pronounced alterations, with uridine triphosphate (UTP) emerging as one of the
most prominently dysregulated metabolites.
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Figure 5. Pathway analysis of the 31 dysregulated endogenous metabolites following Sacubi-
tril/ Valsartan administration. Color intensity (yellow to red) reflects the significance level of each
metabolite within the identified pathways.

3. Discussion

Sacubitril combined with Valsartan is widely used formula to improve outcomes in
heart failure patients, yet its effects on metabolic pathways remain insufficiently charac-
terized. In this study, we aimed to identify dysregulated metabolites associated with the
administration of this combination therapy, thereby providing insights into potential side
effects and enabling more targeted treatment strategies. Employing an LC-QToF HRMS
approach, we identified novel metabolic patterns that illuminate the biological mechanisms
underlying Sacubitril/Valsartan’s clinical efficacy and potentially its adverse effects in
heart failure. These insights could ultimately guide more refined patient management and
personalized pharmacological interventions.

Previous investigations in heart failure patients, both with and without diabetes
mellitus, revealed that Sacubitril/Valsartan disrupts glucose, lipid, and natriuretic peptide
metabolism [5]. Nonetheless, the precise mechanisms that mediate these benefits are
not fully understood. As shown in Figure 2B, multivariate modeling using OPLS-DA
revealed a clear metabolic separation between pre-dose and Cmax samples, highlighting
a distinct and reproducible drug-induced shift in the plasma metabolome. This indicates
a robust pharmacometabolomic effect, even in healthy individuals. Our study identified
31 dysregulated endogenous metabolites—primarily amino acids, peptides, and lipids,
with noteworthy alterations in pyrimidine metabolism (Figure 5). Figure 4 illustrates the
clustering of these dysregulated metabolites, with visible temporal changes that align
with individualized pharmacokinetic profiles. Heightened production, conversion, and
transport of pyrimidine molecules suggest increased cellular growth demands, particularly
relevant in the context of heart failure pathology.

Among the most prominently dysregulated metabolites was UTP, which plays a
central role in pyrimidine metabolism as a precursor for other nucleotides vital for DNA
and RNA synthesis [18]. Elevated UTP and other pyrimidine nucleotides can accelerate
cellular proliferation, underscoring their potential importance in both physiological and
pathological remodeling processes [18]. Consequently, targeting pyrimidine metabolism
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may provide therapeutic strategies to attenuate hypertrophy, limit fibrosis, and bolster
cardiac function [18,19].

The dual mechanism of Sacubitril/Valsartan via neprilysin inhibition plus angiotensin
II receptor blockade promotes cardiac repair by reducing cardiac strain through RAAS
modulation and enhancing natriuretic peptides. These changes support pathways linked
to cell cycle activation and cardiomyocyte regeneration [20]. In heart failure, compromised
cardiomyocyte turnover exacerbates disease progression. By driving cell cycle re-entry and
regulating proteins essential for cell division, Sacubitril/ Valsartan may mitigate myocardial
necrosis, potentially improving tissue viability and clinical outcomes. Indeed, reactivating
the cardiomyocyte cell cycle can promote functional recovery after cardiac injury [20].
This targeted shift could reduce necrosis and reverse some of the maladaptive remodeling
commonly seen in advanced heart failure.

Our findings underscore the pivotal role of pyrimidine metabolism in heart failure
and suggest that Sacubitril/Valsartan can modulate this pathway, thereby supporting
cardiac repair. Figures 2B and 4 collectively provide visual evidence of the drug’s temporal
metabolic impact and its influence on pyrimidine and proliferative signaling pathways.
This study offers several distinctive strengths that advance current pharmacometabolomics
research. First, it represents the first-in-human untargeted metabolomics investigation of
Sacubitril/ Valsartan administration in healthy volunteers, providing foundational insight
into the acute systemic metabolic responses to this widely prescribed heart failure therapy.
Second, the study design employed individualized pharmacokinetic profiling to guide
sampling time points, allowing for high-resolution temporal mapping of drug-induced
metabolic changes. Furthermore, this subject-specific approach, focusing on personalized
Tmax and Cmax intervals enabled detection of subtle, yet biologically meaningful, metabo-
lite fluctuations that would likely be obscured using conventional fixed time points. Third,
the integration of both multivariate and univariate statistical models, including OPLS-DA
with permutation validation and FDR-corrected ANOVA, strengthens the analytical ro-
bustness and confidence in the observed metabolic signatures. The clear separation of
pre-dose and Cmax metabolic states (Figure 2B), alongside well-clustered dysregulated
metabolites (Figure 4), highlights the reliability of the results. Fourth, this study employed
high-resolution LC-QToF HRMS technology with stringent metabolite annotation criteria
based on multiple public databases, enhancing the credibility of identified features. Lastly,
the focus on pyrimidine metabolism and cell cycle regulators such as UTP fills a critical
knowledge gap in understanding the proliferative and biosynthetic processes potentially
modulated by Sacubitril/Valsartan. These findings open new avenues for mechanistic
investigation and therapeutic repurposing. Together, these strengths make the current
study a valuable reference for future research on cardioactive pharmacotherapies and
exemplify how precision medicine approaches can be applied even in early-phase, healthy
volunteer settings.

While the design enabled the detection of temporal metabolic alterations associated
with drug exposure, several limitations should be acknowledged. First, the sample size
was small (n = 14) and limited to male subjects, which restricts the generalizability of
the findings across sexes. Metabolic responses can differ between males and females
due to hormonal and physiological variations, and future studies should incorporate sex-
balanced cohorts to assess potential sex-specific drug responses. Second, 50% of participants
were self-reported smokers, and while no statistically significant differences in pyrimidine
metabolism were observed between smokers and non-smokers within this sample, the small
subgroup size precluded rigorous stratified analysis. Smoking is known to affect several
metabolic pathways, including nucleotide metabolism; therefore, the influence of smoking
status warrants further investigation in larger, stratified studies. Third, although this
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study employed a two-period crossover design to enhance reproducibility and minimize
inter-individual variability, it is important to recognize potential confounding effects from
diurnal variation in metabolite levels. All dosing and sample collections were conducted in
the early morning in the fasted state, and meals were standardized, minimizing time-of-day
and fed-state variability. However, subtle circadian influences on metabolism cannot be
fully excluded without continuous sampling over a 24 h period. Fourth, only a single dose
of Sacubitril / Valsartan was administered, and thus this study reflects acute, short-term
pharmacometabolomic effects in healthy individuals. The relevance of these findings to
chronic dosing or patient populations with heart failure remains uncertain. While the
observed upregulation of pyrimidine metabolism and dysregulation of cell cycle markers
(e.g., UTP) suggest possible links to cardiac remodeling, this hypothesis requires further
validation in clinical settings.

Our finding show PIP (20:4-20H/18:0) is a derivative of phosphatidylinositol phos-
phate lipids, which are essential for intracellular signaling and membrane trafficking.
Alterations in PIP metabolism have been linked to cardioprotective mechanisms, partic-
ularly via PI3K/ Akt signaling, which is upregulated in response to natriuretic peptide
activation and can mediate cardiomyocyte survival and anti-hypertrophic effects [21,22].

Ether-linked and hydroxylated lipid species, such as PGP(a-15:0/20:3-20H) and
DG(2:0/20:3-20H/0:0), though infrequently reported, may indicate modulation of redox-
sensitive lipid pathways, possibly reflecting the attenuation of oxidative stress seen with
ARNi therapy. Sacubitril/Valsartan has been shown to reduce lipid peroxidation and
improve mitochondrial efficiency in both clinical and experimental models [23].

These changes may also involve lipid mediator resolution pathways, as DG and PGP
species can act as intermediates in the biosynthesis of eicosanoids, resolvins, and other
inflammation-resolving lipids. This is consistent with reports that ARNi reduces systemic
and cardiac inflammatory cytokine expression [24].

Finally, although advanced multivariate and univariate analyses were used to identify
significant metabolic changes, subtle inter-individual variability in metabolite expression
could still influence the clustering and model performance. Moreover, the annotations
of metabolites were based on high-resolution MS data and public databases without
MS/MS confirmation for all features, which may introduce identification uncertainties in
some cases. In conclusion, while this pilot study demonstrates the utility of untargeted
metabolomics to explore drug-induced metabolic shifts, it also underscores the need for
larger, sex-inclusive, and clinically diverse cohorts to validate these findings and explore
their translational significance.

4. Materials and Methods
4.1. Subject Recruitment and Study Design

Healthy volunteers were recruited following clinical laboratory testing and compre-
hensive screening protocols in accordance with ICH-GCP standards. Eligible participants
were non-smoking males and females aged 18 to 45 years, with body mass index (BMI)
between 18.5 and 27.0 kg/m? and no clinically significant abnormalities upon physical
examination, electrocardiogram, or routine hematological and biochemical parameters.

All volunteers enrolled in this study were required to be in good general health, with
no history of acute or chronic illnesses, and with normal hepatic and renal function con-
firmed by clinical laboratory testing. Participants were excluded if they had taken any
prescription or over-the-counter medications within two weeks prior to dosing. Female
subjects of childbearing potential were eligible only if they tested negative for pregnancy at
screening. Additional exclusion criteria included a known hypersensitivity to Sacubitril,
Valsartan, or related agents; participation in another clinical trial within the previous 60
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Sacubitril/valsartan
(97.2 mg/102.8 mg)

days; recent blood donation exceeding 500 mL within 8 weeks; a history of alcohol or
substance abuse; smoking within six months; and any gastrointestinal, hepatic, renal, or
cardiovascular disorders that could potentially influence drug metabolism or absorption.
Volunteers were also excluded if screening results revealed abnormal fasting glucose levels;
seropositivity for hepatitis B, hepatitis C, or HIV; or if they had a known intolerance to
components of the standardized meals. Comprehensive screening was conducted within
21 days prior to dosing and included a detailed medical history, physical examination,
electrocardiogram, vital signs assessment, and laboratory evaluations of hematology, bio-
chemistry, urinalysis, and infectious disease markers.

Fourteen healthy volunteers passed the extensive health screening and were recruited
for this study. In Phase I (“Experiment 1”), each received a single 200 mg film-coated tablet
containing 97.2 mg Sacubitril and 102.8 mg Valsartan (Novartis Farma, Italy) (Scheme 1).
After a two-week washout period, the same volunteers repeated the same experiment
with an identical dose in Phase II (“Experiment 2”). This study was conducted twice to
enhance the statistical robustness and reproducibility of the findings, which is especially
important when evaluating the pharmacometabolomic impact of a combination drug such
as Sacubitril / Valsartan. Blood samples were kept at room temperature (approximately
20-22 °C) for no longer than 30 min prior to centrifugation for plasma separation. Following
centrifugation, plasma samples were aliquoted and immediately stored at —80 °C. Samples
remained frozen for a maximum of six months before analysis to preserve integrity. Plasma
was collected at multiple time points; however, only eight time points, selected based on the
individual mean Tmax of both drugs, were included in this study: pre-dose, before Cmax1,
before Cmax2, before Cmax3, at Cmax, after Cmax1, after Cmax2, and 48 h post dose.

(n=14) (n=14)
g Eight-Time points: Eight-Time points:
Pre-dose 0h i Pre-dose Oh
before Cmax1| 0.71 h . before Cmax1| 0.71 h
before cmax2| 0.91h | @ washout period « _, before Cmax2| 0.91 h

before Cmax3| 1.05 h - before Cmax3| 1.05 h

(2 weeks minimum)

[Cmax 1.84h Sacubitril/valsartan (Cmax 1.84h

|[After Cmax1 2.13h (97.2 mg/102.8 mg) |After Cmax1 2.13h

IAfter Cmax2 | 2.38 h IAfter Cmax2 | 2.38h

Post-dose 48 h Post-dose 48 h
Phase I Phase I1

Scheme 1. Study of Sacubitril/Valsartan (97.2 mg/102.8 mg) in healthy volunteers (1 = 14), with
eight sampling points per phase and a > 2-week washout period.

4.2. Chemical and Material

LC-MS-grade acetonitrile (ACN), methanol (MeOH), formic acid, sodium formate
(HCOONa), LockSpray [Leucine-enkephalin], and distilled water were purchased from
Fisher Scientific (Ottawa, ON, Canada). Uridine triphosphate (UTP) and cholic acid stan-
dard materials were purchased from Sigma (St. Louis, MO, USA).

4.3. Sample Preparation

Metabolites from 224 volunteer and 20 pooled quality control (QC) samples were
extracted following the lab’s standard protocol and stored at —80 °C [25]. In detail, 50 pL
of plasma was transferred into an Eppendorf tube. The metabolites were extracted by
adding 950 pL of the extraction solvent 1:1 v/v (ACN: MeOH). Afterward, the samples were
placed on the shaker for 1 hr at 25 °C in a Thermomixer at 600 rpm (Eppendorf, Germany).
The slurry was centrifuged at 16,000 r.p.m and 4 °C for 10 min, and the supernatant was
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transferred into a new Eppendorf tube to be evaporated using a speed vacuum overnight
(SpeedVac; Christ, Germany). The dried extract, stored at —80 °C, was reconstituted
for metabolomics analysis with 100 pLof mobile phase (1:1) A:B [A: 0.1% formic acid in
dH,;O—B: 0.1% formic acid in 1:1 v/v MeOH and ACN] (Scheme 2).

i centrifuge at 1 600_0
transfer 50 pL 950 L 50:50 (ACN: MeOH) “~ Mixfor 1hat 600 rpm. Tpm, 4°C for 10 mins
- > > >
L Ry~
= = 5
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Scheme 2. Overview of the study’s workflow for sample collection, processing, LC-HRMS analysis,
and data interpretation.

4.4. Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF HRMS)

The sample’s metabolome was profiled using a Waters Acquity ultra-performance
liquid chromatography (UPLC) system coupled with a Xevo G2-S QTOF mass spectrometer
equipped with an electrospray ionization source (ESI). A 5 uL sample was injected into an
ACQUITY UPLC HSS T3 (100 x 2.1 mm 1.8 um) column (Waters Ltd., Elstree, UK). The
mobile phase was composed of 0.1% formic acid in dH,O as solvent A, and B consisted of
0.1% formic acid in 1:1 v/o ACN: MeOH. A gradient elution schedule was run as follows:
0-16 min 95- 5% A, 16-19 min 5% A, 19-20 min 5-95% A, and 20-22 min 5- 95% A, at
300 pL/min flow rate. MS spectra were acquired under positive and negative electrospray
ionization modes (ESI+, ESI—). MS conditions were as follows: source temperature was
150 °C, the desolvation temperature was 500 °C for both ESI, the capillary voltage was
3.20 kV (ESI+) or 3 kV (ESI—), cone voltage was 40 V, desolvation gas flow was 800.0 L/h,
and cone gas flow was 50 L/h. The collision energies of low and high functions were set at
off and 10 V to 50 V, respectively, in MSE mode. The mass spectrometer was calibrated with
sodium formate in 100-1200 Da. Data were collected in continuum mode with a Masslynx™
V4.1 workstation (Waters Inc., Milford, MA, USA). QCs were introduced to the instrument
randomly to validate the system’s stability [18]. After that, they were analyzed following
the routine protocol. The acceptance criteria were to have all the QC samples separated
from the other study groups, clustered together, and use their relative standard deviations
(RSD%) < 40% [25].

4.5. Metabolite Identification and Enrichment Pathway Analysis

The raw mass spectrometry data were processed using Progenesis QI v3.0 (Waters
Technologies, Milford, MA, USA). Initial steps included alignment of ion signals based
on retention time and mass-to-charge ratio (m/z), followed by automated peak picking
and deconvolution using default parameters to ensure high-quality feature detection. To
improve data reliability, only features detected in >80% of the samples were retained,
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and those with low abundance or poor signal quality were excluded using Mass Profiler
Professional (MPP) software v15.0 (Agilent Inc., Santa Clara, CA, USA).

Metabolite annotation was performed using Progenesis QI (Waters Corporation, Mil-
ford, MA, USA), which integrates accurate mass measurement, isotopic pattern recognition,
adduct detection, and MS/MS fragmentation analysis. Identification was based on the
comparison of precursor and fragment ion masses, isotopic distributions, and fragmen-
tation patterns against established public databases, including the Human Metabolome
Database (HMDB), METLIN MS/MS (accessed 14 December 2023), LipidMaps, LipidBlast,
and KEGG. A mass error threshold of £5 ppm was applied. Annotation confidence was
further enhanced using both empirical and in silico fragmentation tools embedded in
the software, with progenesis fragmentation scores and isotope similarity contributing to
overall annotation ranking.

All metabolite identifications were assigned as putative (MSI Level 2), in accordance
with the Metabolomics Standards Initiative [26], as authentic standards were not analyzed
under matched chromatographic and instrumental conditions. No MSI Level 1 identifica-
tions were reported.

To complement annotation-dependent pathway analysis, a complementary enrich-
ment analysis was conducted using the mummichog algorithm (version 2.0) imple-
mented in MetaboAnalyst 5.0. This method enables functional interpretation of untar-
geted metabolomics data by linking statistically significant m/z features directly to bio-
logical pathways without requiring prior metabolite identification. Significant features
(FDR < 0.05) were mapped against the Homo sapiens KEGG pathway library, and pathway
significance was determined based on overrepresentation analysis and activity scoring.

4.6. Statistical Analysis

To account for inter-individual variability in drug metabolism, sampling time points
were selected relative to each participant’s personalized pharmacokinetic profile, with a
particular focus on individualized Tmax and Cmax. This subject-specific timing allowed
for a more accurate kinetic mapping of metabolite fluctuations during the early, peak, and
late post-dose phases.

Raw metabolite abundance data were processed and analyzed using MetaboAnalyst
6.0 (McGill University, Montreal, Canada; http://www.metaboanalyst.ca) (accessed 13 De-
cember 2023). Prior to statistical modeling, data were median-normalized, log-transformed,
and Pareto-scaled to approximate a normal distribution and minimize the influence of
high-abundance features.

Multivariate statistical analyses were performed to explore overall metabolic vari-
ation across time points. Both partial least-squares discriminant analysis (PLS-DA) and
orthogonal projections to latent structures discriminant analysis (OPLS-DA) models were
constructed to evaluate temporal clustering and separation patterns. Model performance
was assessed using 100-permutation tests, and the key parameters-R?Y (explained variance)
and Q? (predictive ability) were reported to assess model robustness and generalizability.

Complementary univariate analysis was performed using Mass Profiler Professional
v15.0 (Agilent Technologies, Santa Clara, CA, USA). Time-dependent differences in metabo-
lite levels were assessed using one-way ANOVA, followed by Tukey’s post hoc test. Sta-
tistical significance was determined using false discovery rate (FDR) correction, with a
threshold of FDR-adjusted p < 0.05. Additionally, features exhibiting a fold change > 2
between pre-dose and Cmax were prioritized for further biological interpretation. To
visualize dynamic changes, hierarchical clustering and heatmap analysis were conducted
based on Pearson correlation distance and average linkage method. Pathway analysis was
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then applied to the subset of significantly dysregulated endogenous metabolites to identify
the most affected metabolic pathways following Sacubitril/ Valsartan administration.

5. Conclusions

This study is the first to employ an MS-based untargeted metabolomics approach to
characterize the dynamic metabolic effects of Sacubitril/ Valsartan in healthy volunteers.
Our findings highlight the upregulation of the pyrimidine metabolism pathway, with UTP
emerging as potential cell cycle-related metabolic signature influenced by this therapy.
While Sacubitril/ Valsartan has demonstrated an ability to counteract certain metabolic
dysregulations observed in heart failure, further investigation is needed to clarify its di-
rect impact on pyrimidine metabolism and to identify additional modulated metabolites.
Advanced metabolomics techniques will be pivotal in refining our understanding of Sacu-
bitril/ Valsartan’s mechanisms of action and uncovering new therapeutic targets to improve
heart failure management.
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