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Background: Metabolic disease incidence continues rising globally. Adipose

tissue dysfunction serves as a crucial pathophysiological mediator. We evaluate

molecular mechanisms linking adipose dysfunction to metabolic dysregulation.

Methods: We systematically reviewed literature on adipose biology, stress

mechanisms, inflammation, and metabolic networks. Analysis prioritized

methodologically robust studies from the past decade.

Results: Adipose dysfunction disrupts metabolic homeostasis through complex

molecular networks. Stressed adipocytes exhibit mitochondrial impairment and

endoplasmic reticulum (ER) stress. These changes alter inflammatory mediators

and adipokine secretion. Brown and beige adipose regulate energy balance via

uncoupling protein 1 (UCP1)-mediated thermogenesis. Key transcriptional

regulators, PGC-1a and PR domain containing 16 (PRDM16), control

thermogenic adipocyte development. Cellular senescence contributes

significantly to age-related adipose dysfunction through inflammatory

secretory phenotypes. Brown fat also secretes specialized factors influencing

whole-body metabolism, emphasizing adipose tissue’s endocrine function.

Conclusion: Adipose dysfunction represents a critical nexus in metabolic disease

pathogenesis. Cellular stress, inflammation, and metabolic dysregulation

converge at this point. Novel therapies targeting thermogenic activation and

cellular senescence show promise. Despite advancing mechanistic

understanding, developing effective interventions remains challenging due to

adipose tissue’s complex roles in systemic metabolic regulation.
KEYWORDS

adipose tissue dysfunction, metabolic disorders, insulin resistance, inflammatory
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1 Introduction

Adipose tissue (AT) dysfunction represents a central

pathophysiological process in obesity-related metabolic disorders.

In health, AT maintains metabolic homeostasis by dynamically

responding to energy demands through regulated lipid storage and

mobilization. However, factors such as chronic nutrient excess,

physical inactivity, genetic predisposition, and aging can drive AT

dysfunction, overwhelming its adaptive capacity (1–14).

Multiple mechanisms underlie AT dysfunction, including

mitochondrial impairment, ER stress, inflammatory pathway

activation, and extracellular matrix (ECM) remodeling. These

changes create self-reinforcing pathological cycles that worsen

tissue function and promote systemic insulin resistance (15–17).

Notably, AT dysfunction manifests across diverse metabolic

disorders, from obesity-associated insulin resistance to

lipodystrophies, highlighting that proper adipose function, not

just presence, is essential for metabolic homeostasis.

AT comprises distinct depots (white, brown, beige, and pink)

with unique physiological functions and metabolic characteristics

(1, 18–21). White adipose tissue (WAT) controls lipolysis through

Adipose Triglyceride Lipase (ATGL) and hormone-sensitive lipase

(HSL) enzymes (19), while brown adipose tissue (BAT) expresses

UCP1 for thermogenesis (20). Beige adipocytes demonstrate

remarkable plasticity in response to environmental signals (1).

At the molecular level, adipose dysfunction involves cellular

stress responses, aberrant inflammatory signaling, and dysregulated

microRNA networks. These processes collectively compromise

adipocyte metabolic and endocrine functions, disrupting inter-

organ communication and systemic metabolism.

This review integrates current evidence on molecular

mechanisms underlying AT dysfunction in metabolic disorders,

emphasizing adipose-specific signaling networks. We examine

dysfunction across various conditions and analyze emerging

therapeutic approaches targeting thermogenic activation and

cellular senescence pathways, providing an integrated framework

for understanding metabolic disease pathogenesis and identifying

novel intervention strategies.
2 Molecular and functional
organization of adipose tissue

AT plays an essential role in metabolic regulation beyond

simple energy storage (22). These distinct cell types (including the

adipocytes at different stages of differentiation, resident immune cell

types, and vascular elements) cooperatively organize into

metabolically active tissue units in the extracellular space (23).

Dense vascular beds and neural inputs regulate metabolic

responses at both tissue and systemic levels.

Biochemical characteristics of AT have revealed complex

regulatory networks that control energy metabolism. Key enzymes

such as ATGL and HSL play a role in the storage and mobilization

of lipids, and their dysregulation directly contributes to metabolic

disorders (22). Several elements, such as hormonal levels, diet
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conditions, and the interaction of certain proteins, influence these

pathways. AT acts as an endocrine organ and releases many

bioactive substances that affect the overall metabolism. These

adipokines control appetite, energy consumption, insulin

sensitivity, and inflammation responses through a variety of

signal pathways. Additionally, the tissue processes several key

hormones via specific enzyme systems, modifying androgens,

glucocorticoids, and thyroid hormones.

Anatomical distribution significantly impacts AT function, with

distinct depots exhibiting unique molecular and metabolic profiles.

Recent molecular analyses have identified four categories of AT -

white, brown, beige, and pink - each serving specialized

physiological roles (22, 23). These depot-specific characteristics

stem from the differential expression of developmental

transcription factors and metabolic enzymes.

The global rise in metabolic disease prevalence has spurred

research into the molecular mechanisms underlying AT

dysfunction. Analysis of AT from obese subjects reveals

characteristic alterations in gene expression networks controlling

metabolism, inflammation, and endocrine function. Recent studies

focus on depot-specific transcriptional programs and their

relationship to systemic metabolic regulation.

This article explores molecular control mechanisms in AT

function and metabolic disease, based on evidence from

biochemical, cellular, and clinical studies. Experimental findings

highlight specific transcriptional networks and signaling pathways

maintaining adipose homeostasis. Analysis of these molecular

mechanisms provides critical insights for developing targeted

therapeutic strategies.
3 AT types and their distinct functions

AT functions as a complex endocrine organ with diverse roles

beyond simple energy storage (24). It encompasses multiple cell

types and is classified into four distinct categories: white, brown,

beige, and pink AT (14). AT’s plasticity and heterogeneous nature

(Table 1) are fundamental to its role in energy homeostasis,

metabolic regulation, and disease progression (18).
3.1 White AT: energy storage, endocrine
regulation, and metabolic homeostasis

White AT (WAT) regulates energy homeostasis through

lipolysis, with ATGL and HSL mediating 95% of triglyceride

catabolism (19). These enzymes exhibit complex regulation by

hormonal and nutritional status (34), with disrupted lipolysis

directly contributing to metabolic disorders (35, 36). WAT

functions extend far beyond simple energy storage, secreting

numerous bioactive adipokines including leptin, adiponectin,

resistin, visfatin, Tumor necrosis factor-a (TNF-a), and various

interleukins (37, 38). Each adipokine serves distinct metabolic roles.

Leptin regulates appetite and energy consumption through the

hypothalamic signal, while adiponectin increases insulin
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sensitivity and suppresses inflammation (39). Resistin and visfatin

modulate glucose metabolism and immune responses (40).

WAT also processes several key hormones, transforms

androgens into estrogens through aromatization activity, and

mutates glucocorticoids through type 1 11b-hydroxysteroid
dehydrogenase (11b-HSD1) (41). WAT metabolizes thyroid

hormones, which regulate the lipogenic and lipolytic genes (42).

Additionally, WAT facilitates thyroid hormone metabolism,

thereby influencing lipogenic and lipolytic gene expression (42).

Structurally, WAT provides essential mechanical functions. The

tissue acts as a protective cushion for internal organs, provides joint

support, and generates thermal insulation. Particularly,

subcutaneous WAT functions as an effective thermal buffer

during cold environmental conditions.
3.2 Brown AT: thermogenic organ for heat
production and energy expenditure

Brown AT (BAT) is characterized by the presence of UCP1

(thermogenin), a specialized mitochondrial protein that uncouples

the electron transport chain from ATP synthesis by allowing

protons to leak across the inner mitochondrial membrane,
Frontiers in Endocrinology 03
thereby dissipating the proton gradient as heat rather than using

it for ATP production (20). Cold exposure triggers BAT activation

through sympathetic nerve stimulation and b-adrenergic signaling
(28). The tissue’s high metabolic activity drives systemic energy

expenditure through rapid fatty acid oxidation and glucose uptake,

significantly impacting basal metabolism and temperature

regulation (43).

The discovery of active BAT in adult humans in 2009

fundamentally changed understanding of metabolic regulation

(44). BAT’s beige/brite adipocytes display remarkable adaptation

to environmental and physiological changes (45). Higher BAT

activity correlates with reduced body fat mass, suggesting

protective effects against obesity (46). BAT secretes specialized

signaling factors - batokines - comprising peptides, metabolites,

lipids, and regulatory RNAs (47). These molecules target metabolic

processes in liver, heart, muscle, and WAT through multiple

signaling pathways (48).

Batokines regulate whole-body metabolism by modifying

glucose handling, insulin responses, and inflammatory signals

(49). Key batokines include PLTP (Phospholipid Transfer

Protein), FGF21 (Fibroblast Growth Factor 21), VEGF-A

(Vascular Endothelial Growth Factor A), BMP8 (Bone

Morphogenetic Protein 8), NRG-4 (Neuregulin 4), and IL-6, each
TABLE 1 Integrated analysis of AT functional networks.

Adipose
Type

Primary Functions Key Mechanisms Physiological Impact References

WAT

• Energy Storage & Mobilization

• Stores energy as triglycerides (200,000-
300,000 kcal in adults). Regulated by insulin
and catecholamines. Lipolysis via HSL
and ATGL.

• Primary energy reserve. Metabolic
homeostasis. Thermal insulation.

(21, 25, 26)

• Endocrine Function
• Secretes adipokines (leptin, adiponectin,
resistin). Produces inflammatory mediators
(TNF-a, IL-6). Processes steroid hormones.

• Appetite regulation. Insulin sensitivity.
Systemic metabolism.

(21, 25, 26)

• Structural Support
• Provides mechanical cushioning. Maintains
tissue architecture. Supports vascular
networks.

• Organ protection. Joint support.
Body contouring.

(21, 26, 27)

BAT

• Thermogenesis
• UCP1-mediated heat production. High
mitochondrial density. b-adrenergic
activation.

• Temperature regulation. Energy
expenditure. Metabolic efficiency.

(28–30)

• Metabolic Regulation
• Secretes batokines (PLTP, FGF21, VEGF-A).
Glucose uptake. Fatty acid oxidation.

• Systemic metabolism. Glucose homeostasis.
Lipid utilization.

(28, 30, 31)

Beige Adipocytes

• Adaptive Thermogenesis
• Inducible UCP1 expression. Recruitable
from WAT. Cold/b-adrenergic responsive.

• Flexible energy expenditure. Metabolic
adaptation. Temperature regulation.

(29, 31, 32)

• Metabolic Plasticity
• Browning/whitening capacity. PGC-1a
activation. FGF21 responsiveness.

• Metabolic flexibility. Energy homeostasis.
Stress adaptation.

(29, 31, 32)

PAT

• Lactation Support
• Mammary gland development. Milk
production. Lipid synthesis/secretion.

• Offspring nutrition. Maternal metabolism.
Tissue remodeling.

(21, 27, 33)

• Hormonal Response
• Prolactin sensitivity. Oxytocin
responsiveness. Pregnancy adaptation.

• Reproductive function. Metabolic
adaptation. Tissue plasticity.

(21, 27, 33)
This table delineates the hierarchical organization of AT function across four distinct depot types (WAT, BAT, Beige Adipocytes, and PAT). For each tissue type, primary functions are mapped to
their underlying molecular mechanisms and subsequent physiological impacts, revealing the complex interplay between local tissue activities and systemic metabolic regulation. Understanding
these relationships is crucial for developing targeted therapeutic strategies for metabolic disorders, as dysfunction in any of these pathways can contribute to conditions such as obesity, diabetes,
and metabolic syndrome. The parallel presentation of mechanisms across tissue types highlights both unique specializations and common regulatory themes in adipose biology. HSL, Hormone-
Sensitive Lipase; ATGL, Adipose Triglyceride Lipase; TNF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; BAT, Brown Adipose Tissue; UCP1, Uncoupling Protein 1; PLTP, Phospholipid
Transfer Protein; FGF21, Fibroblast Growth Factor 21; VEGF-A, Vascular Endothelial Growth Factor A; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PAT, Pink
Adipose Tissue.
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controlling specific metabolic pathways (50–52). These factors

enhance insulin sensitivity and substrate utilization across

multiple tissues (53). Type 2 diabetes mellitus (T2DM)

progression alters both batokine production and BAT function

(54). Recent work identifies exosomal microRNAs as additional

metabolic regulators (49). IL-6 shows tissue-specific effects -

promoting glucose homeostasis and energy expenditure in BAT

while potentially causing insulin resistance elsewhere (55, 56).

Through these diverse endocrine functions, BAT emerges as a

central coordinator of systemic metabolism.
3.3 Beige adipocytes: inducible
thermogenic cells for metabolic flexibility

Beige adipocytes are a unique thermogenic cell population that

emerge within WAT through a process called “browning” or

“beiging,” triggered by various environmental stimuli such as cold

exposure, b-adrenergic activation, and certain hormonal signals (1).

These cells exhibit significant metabolic plasticity, expressing UCP1

and transitioning between energy storage and expenditure

phenotypes in response to physiological demands (57). Beige

adipocytes contribute to adaptive thermogenesis through both

UCP1-dependent mechanisms and alternative pathways, such as

calcium cycling and creatine-driven substrate cycling, thereby

enhancing glucose homeostasis and lipid metabolism (58).

The molecular pathways governing beige adipose cells utilize

specific transcriptional controllers for development and function.

Each factor serves distinct roles: PPAR gamma coactivator 1 alpha

(PGC-1a) initiates metabolic programs, PRDM16 (PR domain

containing 16) modifies chromatin structure to enable

differentiation, and FGF21 (fibroblast growth factor 21) enables

heat production in mature cells (59). Recent studies demonstrate

how muscle-derived myokines produced during exercise influence

beige fat development. Thyroid hormone signaling pathways

provide additional mechanisms for regulating beige adipocyte

formation and activity (60). Systematic screening has identified

numerous circulating molecules that control differentiation and

thermogenic capacity in both brown and beige adipocytes,

including irisin, FGF21, BMP8, NRG-4, and IL-6, establishing

potential therapeutic targets for treating metabolic disorder (61).
3.4 Pink AT: dynamic plasticity in
mammary gland development and
lactation

Pink AT (PAT) showcases remarkable plasticity, forming from

subcutaneous WAT during pregnancy and lactation. PAT is

uniquely composed of mammary gland alveolar epithelial cells,

known as pink adipocytes, which are specialized for milk

production and secretion (21). PAT formation occurs through

transdifferentiation, where white adipocytes undergo significant

phenotypic and functional changes, including the development of

milk-producing capabilities and alterations in lipid storage and
Frontiers in Endocrinology 04
secretion (21). Pink adipocytes possess distinct features that

differentiate them from both white and brown adipocytes,

including cellular machinery and molecular pathways specialized

for lactation. The transdifferentiation process involves extensive

genetic reprogramming, resulting in significant shifts in cellular

identity and function (62, 63). Research into PAT and its

transformation mechanisms provides valuable insights into

adipose biology and cellular plasticity. Understanding these

processes could lead to new therapies for metabolic disorders and

breast cancer by leveraging cellular reprogramming and

tissue adaptability.
4 Molecular mechanisms of AT
dysfunction

4.1 Cellular stress pathways

Adipocyte dysfunction manifests through multiple disrupted

cellular pathways (Table 2). Precise cellular changes compromise

lipid metabolism, glucose transport, and inflammatory responses,

generating cascading effects that extend beyond the local tissue

environment (1–14). Recent research into obesity-associated

adipose pathology has identified several key molecular signatures.

Adipocyte hypertrophy, with cell diameters expanding up to 150-

200 mm (94), leads to reduced oxygen availability and tissue hypoxia

(95). This is accompanied by persistent inflammatory activation,

marked by elevated levels of specific cytokines, including TNF-a,
IL-6, and interleukin-1b (IL-1b) (96). Laboratory analyses reveal

that these cellular perturbations alter essential signaling networks,

as evidenced by abnormal adipokine profiles and increased immune

cell presence. The subsequent release of free fatty acids (FFAs) into

circulation impairs insulin signaling across multiple peripheral

tissues (4–9).

Affected adipose depots develop sustained mitochondrial

defects and heightened oxidative stress, which amplify existing

metabolic disruptions (10). The location of adipose expansion

critically influences disease progression, with visceral and ectopic

fat deposits having particularly detrimental effects on systemic

metabolism (11).
4.2 ER stress and the unfolded protein
response

The ER contains numerous quality control pathways that

regulate protein processing and maintain cellular homeostasis

through distinct molecular mechanisms. Binding immunoglobulin

protein (BiP) requires ATP for its chaperone function, recognizing

exposed hydrophobic regions on unfolded proteins to prevent

aggregation. X-box binding protein 1 (XBP1) transcriptionally

regulates protein folding genes, while the unfolded protein

response (UPR) activates when protein folding demands increase,

reducing protein synthesis while expanding folding capacity (77).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1592683
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bou Matar et al. 10.3389/fendo.2025.1592683
The major UPR transducers operate through biochemically

distinct mechanisms. Protein kinase R-like endoplasmic reticulum

kinase (PERK) activation triggers eukaryotic initiation factor 2

alpha (eIF2a) phosphorylation specifically at serine 51, leading to

selective mRNA translation despite global protein synthesis

attenuation. The membrane-bound transcription factor ATF6

requires sequential proteolysis within Golgi compartments,

generating an active nuclear form that transcriptionally

upregulates ER-resident chaperones. The bifunctional enzyme

inositol-requiring enzyme 1 a (IRE1a) exhibits both protein

kinase and site-specific endoribonuclease activities, enabling XBP1

mRNA processing and targeted decay of ER-associated transcripts

via Regulated IRE1-Dependent Decay (RIDD) (78). Analysis of

metabolically compromised tissues reveals pronounced activation

of these UPR components, particularly within AT, where UPR

activation is significantly increased, with insulin upregulating the

UPR dose-dependently over the entire physiological insulin range

(from approximately 35 to 1,450 pmol/L) (97).
Frontiers in Endocrinology 05
In AT, obesity induces pronounced ER stress that

fundamentally disrupts metabolic homeostasis through multiple

tissue-specific mechanisms (80, 98). Proteomic analyses of obese

AT reveal significant upregulation of UPR-related proteins

including calreticulin and protein disulfide-isomerase A3, with

Glucose-Regulated Protein 78 (GRP78)/BiP expression increased

3–4 fold compared to lean controls (99, 100). This AT-specific ER

stress directly impairs insulin signaling by promoting c-Jun N-

terminal kinase (JNK)-mediated serine phosphorylation of insulin

receptor substrate (IRS-1), reducing glucose uptake capacity by up

to 60% (101). Moreover, UPR activation in adipocytes dramatically

alters adipokine production patterns, with adiponectin secretion

decreased while inflammatory cytokines including IL-6 and resistin

are increased (101, 102).

The NOD-like receptor family, pyrin domain containing 3

(NLRP3) inflammasome represents a critical mediator of AT

dysfunction during ER stress. Activated by lipotoxicity and ER

stress signals, NLRP3 triggers IL-1b and IL-18 release specifically in
TABLE 2 Integrated analysis of adipocyte dysfunction: from molecular mechanisms to systemic impact.

Pathway Primary Alterations Molecular Changes Systemic Consequences References

Lipid Metabolism
• Enhanced lipolysis
• Impaired lipogenesis
• Reduced fatty acid oxidation

• Increased HSL and ATGL activity
• Decreased lipogenic enzyme expression
• Mitochondrial dysfunction

• Elevated circulating FFAs
• Ectopic fat deposition
• Systemic lipotoxicity

(19, 35, 36)

Glucose Homeostasis
• Reduced glucose uptake
• Impaired insulin signaling
• Decreased GLUT4 translocation

• Reduced IR activation
• Impaired IRS-1/2 phosphorylation
• Defective PI3K/AKT signaling

• Hyperglycemia
• Insulin resistance
• Metabolic inflexibility

(64–66)

Inflammatory Status
• Enhanced pro-inflammatory signaling
• Immune cell infiltration
• Altered adipokine secretion

• Increased NF-kB activation
• Elevated TNF-a, IL-6, IL-1b
• Macrophage polarization to M1 state

• Chronic inflammation
• Systemic insulin resistance
• Tissue dysfunction

(67–70)

Oxidative Stress
• Increased ROS production
• Impaired antioxidant defenses
• Mitochondrial dysfunction

• Enhanced NOX4 activity
• Reduced SOD and catalase
• Compromised electron transport chain

• Cellular damage
• Accelerated aging
• Metabolic dysfunction

(71–76)

Protein Homeostasis
• ER stress activation
• Impaired protein folding
• UPR activation

• BiP/GRP78 upregulation
• PERK/IRE1a/ATF6 activation
• Enhanced CHOP expression

• Cell death
• Inflammation
• Metabolic disruption

(77–80)

Extracellular Matrix
• Enhanced fibrosis
• Altered matrix composition
• Modified tissue mechanics

• Increased collagen deposition
• Enhanced MMP activity
• Modified integrin signaling

• Reduced tissue plasticity
• Impaired adipogenesis
• Mechanical stress

(81–83)

Cell Death Pathways
• Enhanced apoptosis
• Increased pyroptosis
• Necrotic cell death

• Caspase activation
• Inflammasome activation
• Loss of membrane integrity

• Tissue dysfunction
• Chronic inflammation
• Metabolic deterioration

(84–86)

Mitochondrial Function
• Reduced ATP production
• Impaired fatty acid oxidation
• Disrupted fusion/fission

• Decreased respiratory capacity
• Modified mitochondrial dynamics
• Altered metabolic flexibility

• Energy deficit
• Impaired thermogenesis
• Metabolic dysfunction

(87–90)

Cell Signaling
• Modified hormone responses
• Altered growth factor signaling
• Disrupted metabolic regulation

• Impaired insulin/leptin signaling
• Modified AMPK activation
• Altered mTOR signaling

• Hormone resistance
• Growth dysregulation
• Metabolic imbalance

(91–93)
This table systematically maps the major pathways disrupted in adipocyte dysfunction, tracking changes from molecular mechanisms to systemic consequences. The key findings are coordinated
disturbances of lipid and glucose metabolism, with increased lipolysis and insulin signaling as the main drivers of metabolic deterioration. The analysis reveals complex relationships between
oxidative stress, mitochondrial dysfunction and inflammation activation, creating self-insufficiency cycles of cellular stress. Notably, these pathways demonstrate significant cross-talk, where
dysfunction in one system often amplifies perturbations in others. Standard field abbreviations are used throughout: FFAs, GLUT4 (glucose transporter 4), TNF-a, IL-6/1b, ROS (reactive oxygen
species), UPR (unfolded protein response), and ECM (extracellular matrix). Understanding these interconnected pathways has direct therapeutic implications, suggesting potential intervention
points for treating metabolic disorders. HSL, Hormone-Sensitive Lipase; ATGL, Adipose Triglyceride Lipase; IR, Insulin Receptor; IRS-1/2, Insulin Receptor Substrate-1/2; GLUT4, Glucose
Transporter Type 4; PI3K, Phosphoinositide 3-Kinase; AKT, Protein Kinase B; NF-kB, Nuclear Factor Kappa-light-chain-enhancer of activated B cells; TNF-a, Tumor Necrosis Factor Alpha; IL-
6, Interleukin-6; IL-1b, Interleukin-1 Beta; NOX4, NADPHOxidase 4; SOD, Superoxide Dismutase; BiP, Binding Immunoglobulin Protein; GRP78, Glucose-Regulated Protein 78; PERK, Protein
kinase R-like Endoplasmic Reticulum Kinase; IRE1a, Inositol-Requiring Enzyme 1 Alpha; ATF6, Activating Transcription Factor 6; CHOP, C/EBP Homologous Protein; AMPK, AMP-activated
Protein Kinase; mTOR, Mechanistic Target of Rapamycin.
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adipocytes, promoting tissue inflammation and macrophage

recruitment (103, 104). TNFa-induced NLRP3 activation in

adipocytes causes mitochondrial dysfunction and exacerbates

insulin resistance, while also impairing white adipocyte browning

and thermogenic capacity (105, 106). The Toll-like receptor 4

(TLR4)/PI3K/Akt pathway converges with ER stress responses to

amplify AT inflammation (107). Importantly, caloric restriction

and exercise reduce AT NLRP3 expression and inflammation,

suggesting therapeutic potential (104).

AT-specific UPR activation disrupts lipid metabolism through

PERK-ATF4 pathway signaling. ATF4 regulates thermogenesis and

lipolysis by influencing fatty acid utilization gene expression (108).

The three UPR sensors - IRE1, PERK, and ATF6 - alter lipid

enzyme function in adipocytes, affecting fatty acid synthesis and

oxidation (109, 110). High-fat diets intensify ER stress in AT,

compromising endocrine function and accelerating metabolic

disease progression (78). The ER stress-induced transcription

factor C/EBP homologous protein (CHOP) further drives AT

dysfunction by promoting M1 macrophage polarization while

suppressing anti-inflammatory Th2 cytokines (111).

Prolonged UPR activation fundamentally alters cellular

function despite its initial adaptive purpose. Extended

perturbation of ER function progressively compromises insulin

biosynthetic capacity and ultimately triggers CHOP-dependent

apoptotic programs through calcium-dependent mechanisms and

mitochondrial dysfunction (112). These molecular alterations

characterize both obesity and diabetes, where chronic ER

dysfunction perpetuates inflammatory signaling networks and

impairs IR signal transduction through multiple intersecting

pathways (79, 80).

IRE1a activates JNK through TNF receptor-associated factor

(TRAF2) binding, triggering inflammatory signaling cascades.

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) activation occurs through both PERK and IRE1a
pathways, increasing inflammatory cytokine production. These

pathways create a feed-forward cycle where altered lipid

metabolism amplifies cellular stress and inflammation (79, 80).

The ER integrates nutrient sensing across cell types through

regulation of calcium fluxes and lipid metabolic programs,

coordinating cellular responses to metabolic fluctuations (113).

Post-transcriptional control through microRNA networks,

including miR-211, miR-30c, and miR-34a, modulates the cellular

response to protein folding stress, fine-tuning both adaptive and

maladaptive responses (114). Experimental manipulation of ER

protein folding capacity influences beige adipocyte differentiation

programs and metabolic adaptation to high-fat feeding through

coordinated effects on mitochondrial homeostasis and

inflammatory tone in multiple tissues (115).

Therapeutic targeting of AT ER stress shows promise through

chemical chaperone interventions. Studies utilizing 4-

phenylbutyrate demonstrate reductions in adipose GRP78

expression concurrent with decreased plasma metabolites.

Biochemical evaluation reveals 4-PBA mediated suppression of

PERK and IRE1a phosphorylation cascades while maintaining

IRS-1 function (116). Investigation of small molecule UPR
Frontiers in Endocrinology 06
modulators has yielded synergistic effects, with the selective

IRE1a inhibitor HT-6184 enhancing semaglutide-mediated

improvements in body composition and glucose homeostasis.

Combined administration produces superior outcomes with

enhanced preservation of lean mass and decreased ceramide

accumulation in adipose depots (117). These findings establish AT

ER stress as a central mechanism linking obesity to systemic metabolic

disorders including T2DM and cardiovascular disease (118, 119).
4.3 The role of mitochondria in AT
dysfunction and metabolic disorders

AT biopsies reveal substantial mitochondrial alterations at both

structural and functional levels. Quantitative analysis of oxygen

consumption demonstrates a 45% reduction in oxidative

phosphorylation capacity, accompanied by dysregulated acyl-CoA

oxidation and accumulation of oxidative stress markers, specifically

4-hydroxynonenal adducts within subcutaneous adipose deposits

(87). Mass spectrometry-based metabolomic analyses have

identified distinct fatty acid profiles characteristic of pathological

tissue states.

ChIP-seq analysis has mapped PGC-1a binding sites across

nuclear respiratory gene promoters, establishing direct

transcriptional control mechanisms. Clinical specimens exhibit

marked metabolic protein dysregulation - PGC-1a expression

decreases 65% compared to controls, concurrent with diminished

UCP1 and Carnitine palmitoyltransferase 1 (CPT1) protein levels as

determined by immunoblot analysis (88). Tissue-specific deletion of

PGC-1a in adipose reveals its metabolic regulatory functions.

Adipose-selective PGC-1a ablation induces rapid insulin

resistance alongside decreased thermogenic gene expression and

mitochondrial dysfunction (120). This nuclear coactivator responds

to metabolic signals to regulate oxidative phosphorylation genes

through interactions with key transcription factors (121). Studies in

WAT demonstrate PGC-1a’s requirement for both baseline and

rosiglitazone-stimulated mitochondrial activity, though insulin

sensitization by thiazolidinediones (TZDs) persists in its absence

(122). Global PGC-1a knockout mice display unexpected metabolic

phenotypes - reduced adiposity and increased physical activity

despite compromised mitochondrial capacity (123). Moderate

elevation of PGC-1a within physiological ranges augments fatty

acid oxidative capacity and glucose transport in response to insulin

(124). In cardiac tissue, PGC-1a collaborates with PGC-1b to

preserve mitochondrial function as insulin resistance develops

(125). Metabolic phenotyping studies demonstrate depot-specific

requirements for PGC-1a, particularly in BAT where its absence

severely impairs thermogenic capacity. PGC-1 coactivators regulate

metabolism through coordinated binding to nuclear receptors,

enabling adaptive responses to nutritional status and

environmental cues. These molecular interactions establish

distinct transcriptional programs across tissues to maintain

metabolic homeostasis.

Dynamic imaging reveals fragmented mitochondrial networks

and accelerated ROS generation in metabolically compromised
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adipocytes. Longitudinal clinical studies demonstrate progressive

decline in PGC-1a activity correlating with heightened

inflammatory markers and oxidative damage in AT specimens

(120, 126). These mechanistic findings from both human

pathology and experimental models highlight the therapeutic

relevance of mitochondrial quality control mechanisms.

Biochemical analyses establish AMPK as a central regulator of

mitochondrial biogenesis through direct modulation of lipid

oxidation. Phosphoproteomic mapping in cardiac tissue reveals

extensive AMPK-dependent signaling networks, where pathway

perturbation produces severe metabolic consequences (16).

Current therapeutic development focuses on mitochondrial

function, with particular success seen in thiazolidinedione

compounds that upregulate PGC-1a and mitochondria-targeted

antioxidants (89, 90). Excessive mitochondrial ROS, especially

superoxides (O2•-), hydrogen peroxides (H2O2) and hydroxides

(•OH), characterize obesity adipocyte dysfunction. These cells show

a significant reduction in antioxidant defense capacity, and reactive

oxygen species (ROS) concentrations in cells usually go from

physiological (100nM H2O2) to pathological (>500nM H2O2) (97,

98). NADPH oxidase 4 (NOX4) transfer electrons to molecular

oxygen and acts as the main ROS generator. Redox homeostasis is

controlled by a variety of cell defense mechanisms, including three

different superoxide dismutase (SOD1 in cells, SOD2 in

mitochondria, SOD3), glutathione peroxidase (GPX), and signal

pathways Nuclear factor erythroid 2-related factor 2 (NRF2)-

Kelch-like ECH-associated protein 1(KEAP1) (71).

Oxidative damage disrupts the potential of the mitochondrial

membrane and inhibits the function of the I-IV electron transport

chain. Due to the lack of control of fusion proteins (Mitofusin-1/2

(MFN1/2), Optic atrophy 1(OPA1)) and fission proteins

(Dynamin-related protein 1 (DRP1), mitochondrial fission 1

protein (FIS1), ROS accumulation changes the dynamics of

mitochondrial networks (72–75). These changes reduce

respiratory capacity by 50% and inhibit adipogenic differentiation

(127, 128). The resulting metabolic disturbances trigger the

production of adipocin, especially TNF-a, IL-6, and Monocyte

Chemoattractant Protein-1 (MCP-1, also known as CCL2), to

induce inflammatory mediators.

Cellular ROS concentrations require precise regulation through

a complex interplay with calcium signaling and ER function. Both

excessive and insufficient oxidative states compromise adipocyte

function (76). Mitochondrial ROS serve as critical signaling

molecules, regulating mitochondrial DNA transcription and

modulating UCP1-dependent thermogenesis. These pathways

directly influence cellular bioenergetics, with multiple metabolic

processes depending on proper ROS signaling. Energy expenditure

patterns show ROS-dependent regulation through AMPK pathway

activation (129).

AT in obesity displays persistent inflammatory activation, with

oxidative stress mechanisms operating continuously. These

processes establish feed-forward cycles of metabolic dysfunction

(130, 131). Multiple cellular ROS sources contribute to oxidative

burden, with mitochondrial electron transport generating

approximately 70% of total cellular ROS. NADPH oxidase
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complexes produce the remaining oxidative species, which

activate NF-kB-dependent transcriptional programs (132). This

activation results in a 5–10 fold increase in pro-inflammatory

cytokine production.

Metabolic perturbations impair IR signaling cascades through

JNK and IkB kinase-b (IKKb) activation, leading to serine

phosphorylation of IRS-1. They dysregulate lipid metabolism and

storage, contributing to cardiovascular pathologies. Adipocyte

hypertrophy triggers immune cell recruitment, with M1

macrophage infiltration maintaining the inflammatory state (133).

Multiple pathological triggers initiate these cascades, including

dietary lipid excess and altered microbiota composition,

particularly reduced Bacteroidetes-to-Firmicutes ratio.

Oxidative stress synergizes with inflammatory processes in AT

to severely disrupt glucose homeostasis. ROS directly modify

insulin signaling proteins through oxidation of critical cysteine

residues. Oxidative damage reduces glucose transporter type 4

(GLUT4) vesicle translocation by approximately 60%, as

measured by membrane fraction analysis (133). Cellular glucose

uptake capacity diminishes markedly, typically showing a 70-80%

reduction compared to healthy adipocytes.

Current interventions target multiple pathways simultaneously

for maximal effect. Currently, certain NOX4 inhibitors

(GKT137831), as well as mitochondrial antioxidants (MitoQ, SS-

31), of which some are in phase II clinical trials (134), fall into this

category. Lifestyle changes, especially adherence to regular physical

exercise and Mediterranean diet-as reflected by reduced oxidative

stress of adipocytes (as measured by plasma levels of F2-

isoprostanes and carbonyls of proteins)-showed positive effects

(135, 136). Some of the important biomarkers to monitor are

systemic oxidative stress (8-isoprostane, malondialdehyde),

antioxidant capacity (Reduced glutathione/Oxidized glutathione

(GSH/GSSG) ratios, SOD activity), inflammation (high-sensitivity

C-reactive protein (CRP), IL-6), and metabolic function

(adiponectin/leptin ratios) (137, 138).

Novel therapeutic approaches involve mitochondrial-targeted

antioxidants, combination anti-inflammatory and antioxidant

strategies, ER stress modulators, and microbiote-targeted

therapies. These multi-targeted interventions try to restore

metabolic homeostasis through multiple mechanisms targeting

oxidative stress, inflammation, and cell metabolism simultaneously.
4.4 Inflammatory signaling

4.4.1 Immune cell infiltration in AT: mechanisms,
consequences, and clinical implications

AT in obesity shows chronic low-grade inflammation. Multiple

factors drive this inflammatory state. Enlarged adipocytes interact

with infiltrating immune cells. Cellular stressors like mechanical

strain from hypertrophy and local hypoxia initiate AT

inflammation. Under stress, adipocytes release pro-inflammatory

signals. MCP-1 acts as a key mediator that recruits immune cells to

the tissue (139, 140). Macrophages are the first to respond,

triggering self-perpetuating inflammatory cycles that increase
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cytokine production and alter tissue structure (133). These

inflammatory changes progressively disrupt normal metabolism,

leading to insulin resistance and numerous obesity complications

(141). Adipocytes and immune cells establish complex interactions

through adipokines and cytokines, affecting lipolysis regulation and

maintaining a state of chronic inflammation in the tissue (142).

AT shows defined patterns as disease progresses (143). M2

macrophages shift to M1 type, gathering near dying fat cells. These

M1 cells make crown structures and release TNF-a, IL-1b, and IL-6
(144, 145). Over time, these changes impair metabolism and cause

insulin resistance (107). Multiple interconnected factors drive this

dysfunction: continuing adipocyte hypertrophy, worsening tissue

hypoxia, and elevated circulating FFAs create self-reinforcing

inflammatory cycles. These changes result in increasingly severe

metabolic dysregulation throughout the tissue (146).

The immune cell population in dysfunctional AT extends far

beyond macrophages. The tissue accumulates CD8+ T cells, Th1

cells, natural killer cells, B cells, neutrophils, and mast cells in

significant numbers (147). This diverse immune network amplifies

inflammatory signaling through multiple pathways that disrupt

normal AT function, impair insulin signaling cascades, and

dramatically alter adipokine production patterns (133, 148).

Ongoing inflammation changes tissue structure through fibrosis

and altered function (149). Levels of MCP-1, C-C motif chemokine

ligand 5/Regulated upon Activation, Normal T Cell Expressed and

Secreted (CCL5/RANTES), IL-6, IFN-g (interferon-g), and TNF-a
increase in the tissue (145). The effects reach beyond AT and

disrupt multiple organ systems (133). Both B and T lymphocytes

play essential regulatory roles in tissue inflammation and insulin

sensitivity (150). The coordinated activities of macrophages, T cells,

and NK cells drive substantial tissue remodeling and promote

widespread metabolic dysfunction (151, 152).

4.4.2 Pro-inflammatory mediators
Pro-inflammatory Mediators Obesity-induced inflammation in

AT involves macrophage infiltration and stress pathway activation,

with NF-kB driving production of cytokines (TNF-a, IL-6, IL-1b)
that disrupt insulin signaling (67, 68). Notably, C-C chemokine

receptor type 2 (CCR2)-expressing M1 macrophages preferentially

accumulate around necrotic adipocytes rather than arising through

phenotypic conversion of resident M2 populations (68). Advanced

single-cell RNA sequencing has uncovered previously unidentified

AT macrophage subpopulations that transcend the traditional M1/

M2 dichotomy (153). Mass spectrometry-based proteomic profiling

has identified specific adipokine signatures that regulate

macrophage chemotaxis and inflammatory activation states (140).

The progression of obesity involves multiple factors driving

macrophage phenotypic alterations. Elevated FFAs activate

inflammatory signaling cascades while complex cytokine networks

orchestrate cellular responses (154, 155). The accumulation of M1

macrophages triggers activation of JNK and IKK pathways through

pattern-recognition receptor engagement, promoting insulin

resistance through stress kinase signaling mechanisms (69, 70).

This process is exacerbated by concurrent reductions in anti-

inflammatory mediators, particularly adiponectin, further
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disrupting AT metabolic homeostasis (156). Early immunological

alterations include depletion of regulatory immune cell populations

alongside enhanced activation of natural killer cells and CD8+ T

lymphocytes (157). These inflammatory mechanisms progressively

compromise multiple organ systems, accelerating the development

of metabolic disease (5).

4.4.3 Chronic inflammation in AT: pathways to
metabolic dysfunction

Self-perpetuating inflammatory circuits establish chronic AT

dysfunction through interconnected molecular pathways. Initial

inflammatory responses triggered by adipose expansion become

self-sustaining through multiple feedback loops. The effective

therapeutic targeting of these inflammation networks requires a

detailed understanding of the pathological contributions to

metabolic deterioration. Current research continues to uncover

new regulatory mechanisms with potential therapeutic

applications for obesity-related metabolic disorders. The

development of targeted anti-inflammatory interventions may

provide promising strategies to restore AT homeostasis.
4.5 Metabolic dysregulation

4.5.1 Insulin signaling pathways in obesity and
metabolic disease

Metabolic tissues develop lipid intermediates alongside altered

adipokine expression profiles and compromised mitochondrial

function, progressively attenuating insulin responsiveness (64,

65). These changes compromise glucose homeostasis and create

more widespread metabolic derangements associated with insulin-

resistant conditions (158). Adipocytes use mechanistic target of

rapamycin complex 1 (mTORC1) and mTORC2 for metabolic

control (91). These complexes regulate the activities of IRS-1 and

the growth factor receptor-bound protein 10 (Grb10) and fine-tune

their insulin responses, from complex feedback circuits that ensure

metabolic homeostasis in different nutrition environments (92). In

AT, mTOR mediates multiple cellular processes via various

downstream effectors controlling cellular growth, differentiation,

and metabolic homeostasis. Conditional deletion of mTOR

specifically from AT leads to decreased fat mass with increased

systemic insulin resistance and hepatic lipid deposition (159).

In adipocytes, mTORC2 regulates both insulin-stimulated

glucose transport and lipolysis rates (160). This regulation is

achieved through Akt substrate of 160kDa (AS160) that produces

cellular responses to both Akt and mTORC2 signals to regulate

glucose transporter 4 (GLUT4) trafficking during insulin

stimulation, and to maintain glucose homeostasis (161). The

mTOR dependent mechanisms described give insights into

selective insulin resistance in adipocytes and propose novel

therapeutic strategies for interventions in the metabolic disease.

Inflammatory signaling via TNF-a disrupts insulin response

pathways at multiple levels. TNF-a modifies IRS-1 through

enhanced serine phosphorylation, inhibiting the tyrosine

phosphorylation events essential for normal insulin signal
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transduction (162, 163). IkB kinase (IKK) phosphorylates specific

serine residues on IRS-1, maintaining the insulin-resistant state

throughout the inflammatory response (164). Suppressor of

cytokine signaling (SOCS) proteins, most notably the SOCS-3,

inhibit insulin signaling by preventing IRS protein activation

through direct molecular interactions and altered protein stability

in metabolically active tissues (165). TNF-a and SOCS3 establish a

positive feedback loop that amplifies their expression and intensifies

insulin resistance through sustained inflammatory pathway

activation in AT (166) (Table 3). These molecular connections

between inflammation and insulin resistance identify specific

therapeutic targets for addressing metabolic disorders and their

complications in obesity (93).
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4.5.2 Impaired glucose metabolism in AT
The adipose inflammatory milieu generates self-perpetuating

cycles of metabolic deterioration that progressively advance insulin

resistance and T2DM pathogenesis. Obesity-induced inflammation

in AT leads to insulin resistance through various mechanisms.

Proinflammatory macrophages secrete cytokines and microvesicles

that impair insulin signaling and glucose uptake in adipocytes (176–

178). This results in decreased GLUT4 translocation and reduced

insulin-stimulated glucose uptake (167). Neuregulin 4

downregulation in adipocytes induces insulin resistance through

inflammation and autophagic degradation of GLUT4 vesicles (179).

The inflammatory milieu in obese AT disrupts normal function and

leads to systemic insulin resistance (10).
TABLE 3 Molecular mechanisms of insulin signaling disruption in AT.

Mechanism/
Protein

Expression/
Activity

Consequences
Metabolic impact
on AT

Regulatory influence References

IR
Reduced function with
inflammatory serine
phosphorylation

Suppressed tyrosine
phosphorylation; impaired
signal transduction

Decreased glucose uptake;
disrupted insulin signal
initiation

Inflammatory cytokines (TNF-a)
directly block receptor activation

(162–165)

IRS-1
Increased inhibitory
serine phosphorylation

Impaired tyrosine
phosphorylation

Disrupted insulin
signaling cascade

Directly inhibited by IKK
complex and inflammatory
mediators

(66, 162–164)

PI3K/Akt Pathway Diminished activation
Reduced insulin-stimulated
glucose disposal

Metabolic inflexibility;
decreased energy
metabolism

Upstream signaling impairment
leads to downstream
effector modulation

(66, 91, 161)

GLUT4
Reduced expression and
membrane translocation

Impaired glucose transport
Significantly decreased
glucose uptake efficiency

Regulated by insulin signaling
and inflammatory processes

(167, 168)

SNARE Proteins
(VAMP2, Syntaxin
4, SNAP23)

Disrupted complex
formation and
interaction

Compromised vesicle fusion
Impaired glucose
transporter trafficking

Directly influenced by insulin
signaling and inflammatory
mediators

(169–171)

Rab GTPases
Altered targeting
specificity and
activation

Inefficient GLUT4 trafficking
Reduced glucose
uptake precision

Modulated by AS160/Tbc1D4
and upstream signaling
pathways

(172–174)

AS160/Tbc1D4
Impaired phosphorylation
and regulatory function

Disrupted Rab
GTPase modulation

Compromised
GLUT4 translocation

Critically regulated by Akt and
insulin signaling cascade

(66, 161, 174)

mTORC1/mTORC2
Dysregulated
complex activity

Disrupted metabolic
homeostasis

Altered cellular
development and
metabolism

Central regulatory hub for
insulin sensitivity

(91, 159, 160)

TNF-a
Elevated inflammatory
signaling

Induces serine
phosphorylation of key
signaling proteins

Systemic inflammatory
interference

Creates positive feedback loop
with SOCS3

(162, 163, 166)

IL-6 Elevated levels
Inhibits IR signaling; induces
serine phosphorylation of
IRS-1

Impaired glucose
metabolism; increased
hepatic glucose output

Produced by AT and muscle;
contributes to systemic
inflammation

(55, 56, 175)

SOCS3 Increased expression
Inhibits IRS protein
tyrosine phosphorylation

Amplifies insulin resistance
Suppresses insulin signaling
through multiple mechanisms

(165, 166)
An overview of key proteins and pathways mediating insulin resistance in AT. Listed mechanisms include IR serine phosphorylation states, IRS-1 modifications, PI3K/AKT pathway attenuation,
GLUT4 expression changes, SNARE complex assembly defects, Rab GTPase cycling alterations, AS160/Tbc1D4 dysregulation, mTORC1/mTORC2 signaling perturbations, and inflammatory
mediator effects (TNF-a, SOCS3, IL-6). Each component’s contribution to glucose transport dysfunction and metabolic disruption is specified. Downstream consequences on vesicle trafficking,
membrane fusion, and glucose disposal are detailed. The table highlights both direct insulin signaling impairments and inflammatory pathway interactions that amplify insulin resistance. IR,
Insulin Receptor; IRS-1, Insulin Receptor Substrate-1; PI3K/Akt Pathway, Phosphoinositide 3-Kinase/Protein Kinase B; GLUT4, Glucose Transporter Type 4; SNARE, Soluble NSF Attachment
Protein Receptor; VAMP2, Vesicle-Associated Membrane Protein 2; SNAP23, Syntaxin 4, Synaptosomal-Associated Protein 23; Rab GTPases, AS160/Tbc1D4, Akt Substrate of 160kDa/TBC1
Domain Family Member 4; mTORC1/mTORC2, Mechanistic Target of Rapamycin Complex 1/2; TNF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; SOCS3, Suppressor of Cytokine
Signaling 3.
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Insulin-stimulated glucose uptake in AT involves the

translocation of GLUT4 transporters from intracellular vesicles to

the plasma membrane, mediated by soluble NSF attachment protein

receptor (SNARE) proteins (168). The t-SNAREs syntaxin4 and

synaptosomal-associated protein 23 (SNAP23) are essential for

tethering GLUT4 vesicles to the plasma membrane, while the v-

SNARE vesicle-associated membrane protein 2 (VAMP2) is crucial

for fusion (169). These SNARE proteins are localized in lipid rafts,

which may serve as platforms for GLUT4 vesicle fusion (170).

Insulin stimulation increases syntaxin4-containing SNARE

complex formation, possibly through phosphorylation of the

regulatory protein Munc18c (171). Other regulatory factors, such

as Rab GTPases, contribute to targeting specificity in the GLUT4

secretory pathway (172).

The insulin signaling network in metabolically compromised

adipocytes manifests multiple molecular defects: impaired IR

activation kinetics, substantial reduction in IRS-1 tyrosine

phosphorylation, marked suppression of PI3K/Akt pathway signal

propagation, and pathological elevation of inhibitory serine

phosphorylation events on IRS-1 (66). These coordinated

molecular perturbations manifest physiologically as systemic

glucose disposal deficits, compensatory hyperinsulinemia, and

progressive advancement toward metabolic syndrome.

Comprehensive understanding of these molecular regulatory

networks offers critical insights for therapeutic development in

insulin resistance and T2DM (Table 3).
4.6 Metabolic disruptions in lipid
homeostasis

Peroxisome proliferator-activated receptor gamma (PPARg)
determines adipocyte identity while coordinating with sterol

regulatory element-binding protein (SREBP1c) to regulate lipid

homeostasis (180). ATGL and HSL mediate triglyceride

breakdown through sequential enzymatic actions (181). Entry of

fatty acids into cells requires cluster of differentiation 36 protein,

followed by fatty acid binding protein 4-mediated transfer between

cellular compartments. Metabolic disease states trigger enhanced

activity of both lipases in AT, thereby increasing systemic fatty acid

levels (182). Complex mechanisms control these changes through

transcriptional regulation and post-translational modifications that

alter protein function, while protein-protein interactions coordinate

responses (183).

Insulin suppresses lipolysis through multiple mechanisms, with

acute signaling cascades responding rapidly and transcriptional

regulation occurring more slowly. ATGL expression shows

particular insulin sensitivity (184). Perilipin proteins coat lipid

droplets and regulate lipid storage tightly, with fatty acid release

depending on perilipin function (185). Disrupted lipolytic balance

promotes disease, as obesity develops progressively, leading to

insulin resistance and frequently resulting in T2DM (186).

Concurrent with enhanced lipolysis, adipocyte dysfunction

involves impaired lipogenic capacity. PPARg functions as a

master regulator of adipocyte function and lipid homeostasis
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(187), with PPARg2 specifically controlling AT lipid storage and

metabolic flexibility (188). sterol regulatory element-binding

protein 1c (SREBP1c) works in concert with PPARg to regulate

lipogenic gene expression, while fatty acid binding protein 4

(FABP4) and Cluster of differentiation 36 (CD36) facilitate fatty

acid transport and metabolism. Compromised PPARg function

results in decreased expression of lipolytic genes and abnormal

catecholamine-induced lipolysis (189). As AT serves as a critical

buffer for daily lipid flux, its dysfunction can lead to ectopic fat

accumulation and insulin resistance (190). PPARg activation

enhances AT function by modifying fat distribution, adipocyte

phenotype, and lipid metabolism-related gene expression (191).

Furthermore, liver X receptors (LXRs) collaborate with PPARg in

regulating hepatic and adipose lipogenesis during obesity and

insulin resistance (Table 4).
4.7 Metabolic regulation through protein
farnesylation in AT

The post-translational addition of farnesyl groups to proteins

plays a key role in AT metabolic regulation. Insulin triggers

farnesyltransferase activity in adipocytes, leading to p21Ras

modification and subsequent Mitogen-activated protein kinase

(MAPK) pathway activation - a crucial sequence for metabolic

signaling (193). Members of the Ras GTPase family exhibit distinct

requirements for this lipid modification: H-Ras localizes exclusively

to lipid rafts, while K-Ras4B shows plasma membrane preference

through its polybasic domain. Data from adipocyte culture systems

demonstrate insulin-stimulated Ras farnesylation drives both

adipogenic differentiation programs and glucose transport

mechanisms through extracellular signal-regulated kinase 1/2

(ERK1/2) activation (194, 195). Recent work has uncovered

parallel MAPK activation pathways operating through

farnesylation-independent mechanisms in mature adipocytes,

highlighting the complexity of these signaling networks (196).

The Rho GTPase family undergoes similar prenyl

modifications, though through more complex regulatory networks

affecting glucose metabolism (197, 198). RhoA, Rac1, and Cdc42

require carefully balanced prenylation - both farnesyl and

geranylgeranyl additions prove necessary for proper membrane

targeting and effector interactions. Insulin signaling promotes Rab

protein geranylgeranylation, particularly Rab4 and Rab11,

facilitating GLUT4 vesicular trafficking in AT (173). Disrupting

these modifications through statins or specific prenylation

inhibitors blocks preadipocyte differentiation through impaired

cytoskeletal remodeling (199) and compromises glucose-

stimulated insulin release from pancreatic b-cells (200).
SREBP transcription factors, particularly SREBP-2, coordinate

mevalonate pathway flux to generate prenylation substrates farnesyl

pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP)

through regulated intramembrane proteolysis (198, 201, 202).

These regulatory proteins undergo cholesterol-dependent

processing in the Golgi, releasing active nuclear forms that

control both isoprenoid and fatty acid synthesis. SREBP-2
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preferentially activates genes involved in cholesterol biosynthesis

while modulating fatty acid synthesis through FPP-dependent

mechanisms. Complex feedback loops connect SREBP activity to

cellular sterol levels, prenylation substrate availability, and lipid

metabolism through LXR-dependent pathways (201, 202).

Experimental manipulation of protein farnesylation reveals its

broad metabolic impact. Loss of normal farnesylation disrupts IR

trafficking dynamics and surface expression patterns through

altered endosomal sorting mechanisms, contributing to cellular

insulin resistance (203). The farnesylation machinery also

influences GLUT4 movement through effects on cytoskeletal

organization and membrane microdomain composition (174).

Within pancreatic b-cells, farnesylation-dependent Raf/ERK

signaling couples glucose sensing to insulin secretion through K-

ATP channel regulation (204). These findings establish protein

farnesylation as a central coordinator of AT function, with

dysregulation leading to metabolic disease manifestations

including impaired glucose uptake, altered lipid storage, and

disrupted adipokine secretion (Table 5).
4.8 Lipid metabolism and trafficking

Disruption of normal lipid storage patterns frequently leads to

accumulation within non-adipose tissues (non-ATs). This

abnormal fat deposition triggers pathological cascades in

cardiovascular and metabolic systems. The resulting tissue

damage involves multiple molecular mechanisms (205, 206).
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Intracellular lipid homeostasis depends on precise transcriptional

regulation. Recent studies have established the carbohydrate

response element-binding protein (ChREBP) as essential in this

process (192). The enzyme networks controlled by ChREBP

regulate cellular lipid synthesis. Key components include fatty

acid synthase (FAS), which generates palmitate molecules. Acetyl-

CoA carboxylase (ACC) supplies critical malonyl-CoA building

blocks. Stearoyl-CoA desaturase-1 (SCD1) creates specific double

bonds in fatty acid chains (207). Each enzyme performs distinct

catalytic roles in lipid metabolism. Additionally, emerging evidence

suggests that circadian regulation of these enzymes significantly

impacts their activity patterns (208).

In vulnerable tissues - particularly liver parenchyma, striated

muscle, and myocardium - excess lipid burden initiates both cell

death pathways and inflammatory responses (209). The buildup of

specific lipid species, especially Diacylglycerol (DAGs) and

ceramides, causes oxidative damage through ROS generation.

These changes trigger progressive mitochondrial dysfunction

(210). Impaired respiratory chain activity further increases ROS

production. Local tissue inflammation worsens. A self-reinforcing

cycle of metabolic deterioration emerges. Recent work has identified

the endocannabinoid system (ECS) as a key mediator in

lipotoxicity, with Cannabinoid receptor type 1 (CB1) activation

promoting lipogenesis and inflammation (211). The newly

characterized role of mitochondrial-associated membranes

(MAMs) in lipid trafficking adds another layer of complexity to

this pathological cascade. MAMs regulate lipid metabolism, calcium

homeostasis, and ROS generation (212). Disruption of MAM
TABLE 4 Dysregulation of lipid metabolic networks in adipose dysfunction.

Mechanism/
Protein

Expression/
Activity

Consequences Metabolic impact References

PPARg Increased Enhanced adipogenesis Promotes fat cell differentiation and lipid storage (187, 188, 191)

SREBP1c Increased Increased lipogenesis Upregulates fatty acid and triglyceride synthesis (180, 183, 192)

LPL Dysregulated
Altered fatty acid uptake
and storage

Overexpression promotes excessive fat storage; underexpression limits fatty
acid utilization

(181, 182, 190)

HSL Increased Elevated lipolysis Increases FFA release from AT, contributing to metabolic disruptions (19, 35, 36, 181)

ATGL Increased
Amplified triglyceride
breakdown

Converts stored triglycerides to FFAs and glycerol, increasing
circulating FFAs

(19, 34, 184)

CD36 Increased
Enhanced fatty
acid transport

Facilitates cellular fatty acid uptake and contributes to ectopic fat deposition
in non-ATs

(182, 190)

FABP4 Increased
Improved fatty
acid trafficking

Supports intracellular fatty acid transport but excessive levels are linked to
insulin resistance and inflammation

(180, 183, 190)

Circulating FFAs Elevated Metabolic disruption Induces insulin resistance, hepatic steatosis, and lipotoxicity in non-ATs (4, 8)

Perilipin Disrupted
Impaired lipid
storage regulation

Disruption leads to unregulated lipolysis and FFA spillover, contributing to
metabolic dysfunction

(185, 186, 189)
Summary of key regulatory proteins and pathways governing lipid homeostasis. The table catalogs expression patterns and activity states of central metabolic regulators (PPARg, SREBP1c),
lipolytic enzymes (HSL, ATGL), lipid transport proteins (CD36, FABP4, LPL), and structural components (perilipin). Molecular consequences of altered protein function are mapped to specific
metabolic outcomes. Emphasis is placed on the integration of these pathways with mitochondrial energetics and their collective impact on systemic metabolism. Downstream effects on tissue
lipid distribution, insulin sensitivity, and hepatic lipid accumulation are detailed. The table illustrates how perturbations in these interconnected pathways drive progressive metabolic dysfunction
and lipotoxicity. PPARg, Peroxisome Proliferator-Activated Receptor Gamma; SREBP1c, Sterol Regulatory Element-Binding Protein 1c; LPL, Lipoprotein Lipase; HSL, Hormone-Sensitive
Lipase; ATGL, Adipose Triglyceride Lipase; CD36, Cluster of Differentiation 36; FABP4, Fatty Acid Binding Protein 4; FFAs, Free Fatty Acids.
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integrity can lead to increased ROS production, mitochondrial

damage, and activation of inflammatory pathways (213).

The effects manifest differently across organ systems.

Hepatocytes develop steatosis and advance toward non-alcoholic

fatty liver disease (NAFLD). Skeletal muscle fibers show severe

insulin resistance. Cardiac function deteriorates. Pancreatic b-cells
display significant secretory deficits (214, 215). Despite tissue-

specific manifestations, common pathogenic mechanisms exist:

disrupted AT function floods circulat ion with FFAs,

overwhelming normal lipid processing pathways (215, 216). The

resulting cellular stress responses - from ER protein folding defects

to mitochondrial dysfunction - amplify metabolic disruption.

Recent research highlights the crucial role of EVs in inter-organ

metabolic communication and disease progression. EVs, including

exosomes, mediate intercellular and inter-organ crosstalk by

carrying bioactive molecules such as proteins, lipids, and

microRNA (miRNAs) (217). These mechanistic insights into

ectopic fat accumulation highlight several therapeutic targets.

Pharmacological regulation of lipogenic enzymes, enhancement of

FA oxidation, and suppression of inflammatory mediators could

interrupt disease progression. The increasing prevalence of these

disorders necessitates rapid therapeutic development. Success will

likely require concurrent targeting of both cellular stress responses

and systemic metabolic dysfunction.
Frontiers in Endocrinology 12
4.9 Environmental obesogens and their
impact on adipogenic regulation

Environmental obesogens represent endocrine-disrupting

chemicals that promote obesity through alterations in

adipogenesis and metabolic homeostasis (218, 219). Tributyltin

(TBT), a well-characterized obesogen, activates retinoid X

receptor (RXR) and PPARg-key transcriptional regulators of

adipocyte differentiation (218, 220). Critical developmental

exposure to TBT enhances adipocyte differentiation, modifies

gene expression profiles, and induces persistent obesogenic

phenotypes (218, 221). The spectrum of identified obesogens

encompasses bisphenol A, phthalates, and perfluorinated

compounds (219).

The obesogen hypothesis proposes that prenatal exposure

reprograms stem cells toward preferential adipocyte differentiation,

potentially establishing transgenerational inheritance patterns (222).

Recent investigations demonstrate that developmental obesogen

exposure increases AT formation and fat storage capacity in

offspring, with effects persisting across generations (223, 224). These

compounds, prevalent in pesticides, food packaging, and cosmetics,

reprogram adipose stem cells through epigenetic mechanisms

including DNA methylation alterations and chromatin remodeling

(225–228). Transgenerational consequences include increased white
TABLE 5 Protein farnesylation networks in adipose metabolism and disease.

Mechanism/
Protein

Expression/
Activity

Consequences Metabolic impact on AT Regulatory influence References

Farnesyltransferase
(FTase)

Stimulated
by insulin

Enhances farnesylation and
activation of p21Ras

Critical for insulin signaling and
adipocyte function

Disruption can lead to insulin
resistance and metabolic
disorders

(193–196)

Ras family (H-Ras,
N-Ras, K-Ras)

Undergo
farnesylation

Essential for membrane
localization and activation

Important for insulin-induced
adipocyte differentiation and
glucose uptake

Enhanced by insulin stimulation (193–195)

Rho family
of GTPases

Undergo prenylation
Vital for glucose
homeostasis and
metabolic regulation

Balance between farnesylation and
geranylgeranylation is crucial

Disruption can lead to
pathological conditions

(197–199)

Rab proteins
Geranylgeranylation
promoted by insulin

Involved in
vesicle trafficking

Impairment affects insulin-induced
preadipocyte differentiation

Prenylation inhibition disrupts
insulin secretion in pancreatic
b-cells

(173, 174, 200)

SREBPs
Regulate mevalonate
pathway

Produce FPP and
geranylgeranyl
pyrophosphate (GGPP)

Influence fatty acid synthesis
Activation influenced by cellular
lipid levels

(197, 201, 202)

IR
Affected by
farnesylation

Impaired trafficking
and recycling

Contributes to insulin resistance
Disruption leads to
metabolic dysfunction

(203–205)

GLUT4
Translocation
affected by
farnesylation

Involved in glucose uptake Critical for glucose metabolism
Dependent on farnesylation for
proper function

(174, 194,
195, 204)

Raf/ERK pathway
Dependent on
farnesylation

Involved in glucose-
induced insulin secretion

Essential for metabolic regulation
Disruption affects insulin
secretion

(194–196, 204)
Experimental evidence linking protein farnesylation to AT function and metabolic disease progression. Key molecular pathways emerge from insulin-activated farnesyltransferase signaling,
particularly through GTPase modifications. Detailed analysis reveals interconnected regulatory circuits - from p21Ras activation to downstream metabolic effectors. The data encompasses both
physiological and pathological states, mapping how disrupted farnesylation triggers metabolic dysfunction. Evidence spans multiple molecular families including Ras/Rho GTPases, Rab
trafficking proteins, and SREBP transcriptional networks. Experimental findings highlight critical roles in IR dynamics, glucose transport through GLUT4, and Raf/ERK signal propagation.
These molecular interactions provide mechanistic insights into how altered protein farnesylation drives metabolic disease development. FTase, Farnesyltransferase; H-Ras, N-Ras, K-RasRas
family, Rho family of GTPases, Rab proteins; SREBPs, Sterol Regulatory Element-Binding Proteins; FPP, Farnesyl Pyrophosphate; GGPP, Geranylgeranyl Pyrophosphate; IR, Insulin Receptor;
GLUT4, Glucose Transporter Type 4; Raf/ERK, Raf/Extracellular Signal-Regulated Kinase pathway.
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adipose depot weights, adipocyte hyperplasia and hypertrophy, and

hepatic lipid accumulation (223, 229).

Population biomonitoring reveals widespread exposure to

bisphenol A (BPA) and its structural analogues-bisphenol S (BPS)

and bisphenol F (BPF)-detected in consumer products and

biological fluids (230–233). These substitutes exhibit comparable

or enhanced endocrine-disrupting potential relative to BPA (232).

In vitrostudies demonstrate bisphenol-mediated promotion of

adipogenesis and lipid accumulation in human adipocytes

through interference with adipogenic gene expression and

metabolic pathways (234–236).

Epidemiological investigations establish significant associations

between BPA exposure and metabolic perturbations. Meta-analyses

report increased obesity odds ratios of 1.40-1.76 correlating with

elevated BPA concentrations (237–240). BPA exposure correlates

with abdominal obesity risk (odds ratios: 1.31-1.62) and increased

BMI and waist circumference (239–242). Mechanistic evidence

suggests BPA functions as an obesogen through hormonal

receptor modulation and metabolic syndrome promotion (243).

However, cross-sectional study designs and single-point

measurements limit causal inference capabilities (244).

Emerging evidence indicates BPA alternatives, including

Bisphenol AF (BPAF), demonstrate similar endocrine-disrupting

profiles associated with obesity, glucose dysregulation, and

cardiovascular abnormalit ies (245, 246) . Mechanist ic

investigations reveal these compounds activate PPARg pathways,

stimulate adipocyte hypertrophy, and dysregulate adipogenic

networks (234, 236). Exposure induces lipid accumulation, pro-

inflammatory cytokine expression, and impaired insulin signaling

in human adipocytes (235, 247, 248). BPAF specifically

compromises mitochondrial function and promotes adipose

inflammation (249).

Current research priorities encompass: identifying adipose-

specific molecular targets through single-cell genomics;

characterizing critical developmental windows via longitudinal

cohorts; and elucidating transgenerational effects using multi-

generational models. Advanced analytical platforms reveal novel

obesogenic compounds, necessitating regulatory reassessment.

Intervention strategies under investigation include targeted

nutritional approaches and exposure reduction protocols.

Understanding gene-environment interactions, particularly

metabolic gene polymorphisms, may facilitate personalized

prevention strategies for preserving AT function.
4.10 Lifestyle interventions and
environmental factors in AT function

AT plays a crucial role in regulating whole-body metabolism

and energy homeostasis (250). Exercise and physical activity

significantly impact AT function through multiple mechanisms,

including enhanced mitochondrial biogenesis, increased oxidative

capacity, and reduced inflammation (251, 252). Regular exercise

promotes AT remodeling, improves metabolic flexibility, and

stimulates the browning of WAT (251, 253). These effects
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contribute to improved insulin sensitivity and reduced risk of

cardiometabolic disorders (254). AT dysfunction, often associated

with obesity and aging, can lead to various metabolic disorders (3).

However, exercise-induced changes in adipokine secretion and lipid

composition can positively influence other organs and tissues,

promoting overall metabolic health (255, 256).

Exercise-induced browning of WAT has emerged as a

promising mechanism for improving metabolic health. Physical

activity stimulates the release of myokines like irisin and FGF21

from skeletal muscle, which promote WAT browning (257–259).

This process involves increased expression of UCP1 and enhanced

mitochondrial function, leading to improved thermogenesis and

energy expenditure. High-intensity exercise appears more effective

in inducing WAT browning compared to low-intensity exercise

(260). The browning effect is mediated through various pathways,

including b-adrenergic signaling, ROS, and exerkines (261). Irisin,

in particular, plays a crucial role by binding to integrin aV/b5
receptors and promoting WAT browning (262). Furthermore, irisin

supplementation or exercise-induced irisin activation may offer

therapeutic potential for metabolic disorders (263).

Dietary interventions beyond caloric restriction can

significantly impact AT function and inflammation. The

Mediterranean diet, rich in monounsaturated fats and

polyphenols, reduces adipose inflammation by suppressing NF-kB
and MAPK pathways while activating AMPK (264, 265).

Intermittent fasting and ketogenic diets improve mitochondrial

function, reduce inflammation, and enhance autophagy in AT

(266, 267). These diets modulate gut microbiota composition,

decreasing lipopolysaccharide-producing bacteria and

inflammatory signaling in monocytes (266). Caloric restriction

and low-fat diets both promote weight loss and reduce

macrophage infiltration in AT, with caloric restriction showing

superior effects on mitochondrial metabolism (268). The

Mediterranean diet supplemented with almonds improves AT

biology by promoting angiogenesis, adipogenesis, and M2-like

macrophage polarization (269). These dietary interventions offer

promising strategies for managing obesity-related inflammation

and metabolic dysfunction.

Environmental factors, particularly cigarette smoking,

significantly impact AT homeostasis and function. Smoking

induces AT dysfunction through multiple pathways, including

increased lipolysis, inflammation, and insulin resistance (270,

271). Nicotine activates AMPKa2 in adipocytes, leading to

increased lipolysis and free fatty acid release (271). Smoke-

derived oxidants promote adipose inflammation by recruiting

macrophages and increasing pro-inflammatory cytokine

production (272, 273). This chronic low-grade inflammation

disrupts insulin signaling, contributing to insulin resistance.

Smoking-induced adipose dysfunction is characterized by altered

adipocyte differentiation, impaired insulin action, and dysregulated

adipokine secretion (274). These effects extend beyond AT,

impacting whole-body metabolism and increasing the risk of

various metabolic disorders.

Chronic alcohol consumption and obesity significantly disrupt

AT homeostasis, leading to fibrosis and metabolic dysfunction.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1592683
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bou Matar et al. 10.3389/fendo.2025.1592683
Alcohol impairs adipocyte differentiation, reduces adiponectin

expression, and promotes inflammation. It also increases lipolysis

and ectopic fat deposition, contributing to fatty liver disease (275).

Obesity-induced AT fibrosis involves complex cellular interplays,

including macrophage infiltration and preadipocyte activation (276,

277). The Hippo pathway, in conjunction with Transforming

growth factor- b (TGF-b) signaling, plays a crucial role in

adipocyte plasticity and fibrosis development (278). TGF-b
superfamily members regulate adipocyte differentiation, fibrosis,

and metabolic functions (279). Autophagy dysregulation in AT may

contribute to alcohol-induced liver injury (280).

Sleep deprivation significantly impacts AT function and

adipokine secretion patterns. Reduced sleep duration is associated

with increased leptin and visfatin levels, potentially contributing to

inflammation and insulin resistance (281). Sleep loss also decreases

adiponectin levels, which may lead to metabolic dysregulation

(282). The circadian clock plays a crucial role in regulating

adipokine secretion, as demonstrated by the blunted metabolic

response to sleep restriction in Per1/2 mutant mice (283).

Interestingly, chronic sleep deprivation is associated with higher

adiponectin levels in patients with endocrine metabolic disorders,

possibly as a compensatory mechanism (284). The day/night

pattern of leptin is influenced by both the endogenous circadian

pacemaker and behavioral factors such as sleep and food

intake (285).

The mechanisms underlying metabolic dysfunction in AT

extend beyond cellular senescence to include multiple

interconnected pathways. Chronic overnutrition leads to

adipocyte hypertrophy and tissue hypoxia, while persistent

psychological stress activates glucocorticoid signaling and

promotes visceral fat accumulation. Circadian rhythm disruption

alters adipose metabolic gene expression patterns, affecting normal

metabolic oscillations. Environmental pollutant exposure (as

discussed in section 4.9) contributes to adipose dysfunction

through multiple mechanisms. Additionally, gut microbiome

dysbiosis influences adipose inflammation through altered

production of short-chain fatty acids, establishing a complex gut-

adipose axis in metabolic regulation.

Understanding these modifiable factors provides critical

opportunities for preventing and treating adipose dysfunction

through comprehensive lifestyle interventions rather than relying

solely on pharmacological approaches. Future research should focus

on personalized lifestyle prescriptions based on individual AT

characteristics and metabolic phenotypes.
4.11 Regulatory networks of small RNAs in
adipose metabolism

MicroRNA-mediated regulation of gene expression occurs

through binding to partially complementary sequences primarily

in the 3’ untranslated regions (3’ UTRs) of target messenger RNAs,

though binding can also occur in 5’ UTRs and coding regions. This

interaction typically leads to translational repression and/or mRNA

decay, with the relative contribution of each mechanism varying by
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cellular context and the degree of complementarity. The regulatory

influence of miRNAs spans multiple cellular pathways, with current

bioinformatic predictions and experimental evidence suggesting

that miRNAs may regulate the majority (estimated 60-90%) of

mammalian protein-coding genes through complex regulatory

networks (286–288).

AT function depends on precise microRNA-mediated

regulation. Distinct microRNA populations control white

adipocyte differentiation and brown/beige adipocyte thermogenic

programming (289, 290). The impact of these regulatory RNAs

extends to metabolic tissues including pancreatic b-cells,
hepatocytes, and skeletal muscle (291). High-throughput

sequencing has revealed tissue-specific expression patterns that

coordinate systemic metabolic responses (292).

The let-7 family highlights the complexity of microRNA-

mediated metabolic control. These regulators target key

components of glucose homeostasis and insulin signaling networks,

with their expression significantly diminished in diabetic tissues (293,

294). Obesity alters microRNA profiles across metabolic organs,

though these changes can normalize following weight reduction

(295, 296). Notably, adiponectin regulation involves miR-193b

activity, linking obesity-associated decreases in this microRNA to

broader metabolic dysfunction (297, 298).

Analysis of AT from obese subjects reveals characteristic

alterations in microRNA expression. Fat depot expansion

correlates with increased miR-221 and altered patterns of miR-

17-5p and miR-132 across anatomical locations (299–301).

Detection of these molecules in blood points to their role in

systemic metabolic regulation (302, 303). MiR-223 exhibits key

functions in metabolic homeostasis. Its abundance increases in

subcutaneous fat during insulin resistance development (304) and

shapes inflammatory responses in tissue macrophages (305, 306).

Notably, circulating miR-223 decreases as obesity progresses toward

T2DM (307).

The miR-130 family members suppress adipogenesis through

PPARg inhibition (308) and mediate inflammatory signaling (309).

Their reduced expression in obese subcutaneous AT (310) affects

inflammatory responses and insulin sensitivity through altered

immune cell function, with implications for metabolic syndrome

progression (292, 302).

Recent advances highlight emerging regulatory mechanisms in

adipose dysfunction. Epigenetic modifications play a crucial role in

regulating stem cell fate and function, particularly in adipose-

derived stem cells (ADSCs). DNA methylation, histone

modifications, and chromatin remodeling fundamentally

reprogram cell fate decisions and metabolic capacity (311, 312).

These epigenetic mechanisms influence ADSC differentiation into

various lineages, including osteogenic and adipogenic pathways

(313). In the context of obesity and type 2 diabetes, DNA

methylation events are associated with altered AT function and

gene regulation (314, 315). Novel signaling crosstalk between AMP-

activated protein kinase (AMPK) and TBC1 domain family

member ¼ (TBC1D1) reveals additional layers of insulin-

independent glucose uptake regulation (316), while tissue-specific

microRNA networks, particularly miR-223 and miR-130, regulate
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complex inflammatory and metabolic responses through post-

transcriptional control (310, 317, 318). These emerging pathways

provide new therapeutic targets beyond traditional approaches.
4.12 Disrupted adipogenesis in metabolic
disease

Transcription of adipogenic genes begins with chromatin

binding of CCAAT/enhancer-binding protein (C/EBPb) at target
promoters. DNA binding sites for PPARg and C/EBPa become

accessible during subsequent phases, allowing transcriptional

activation of differentiation factors. DNA accessibility changes

through histone modifications at adipogenic gene promoters. The

differentiation program incorporates additional layers of control

through methylation patterns, chromatin structure alterations, and

specific microRNA expression. Transcriptional networks

coordinate with chromatin remodeling complexes to establish

cell-type specific gene expression patterns (319–321).

Bone morphogenetic protein signaling activates early

commitment factors in mesenchymal precursor cells. Wnt

pathway activation modifies chromatin structure at adipogenic

loci, enabling progression toward the adipocyte phenotype.

Further maturation yields functional fat cells containing

characteristic lipid stores and metabolic enzymes. Disruption of

these molecular pathways impairs AT development and function,

leading to systemic metabolic deterioration. The transition between

developmental stages requires precise temporal control of multiple

signaling cascades. Defects in these regulatory networks prevent

proper adipocyte maturation (322, 323).
4.13 ECM remodeling

4.13.1 Matrix composition changes
AT matrix undergoes substantial reorganization during obesity,

marked by elevated deposition of fibrillar collagens and advancing

fibrosis. Analysis of matrix composition reveals that increased

collagen VI levels regulate both metabolic function and

inflammatory states. Molecular studies show collagen VI

deposition initiates cellular responses including enhanced

inflammatory mediator production and disrupted insulin

signaling networks (97). Proteomic profiling reveals elevated

expression of multiple matrix metalloproteinase (MMPs),

including MMP-2, -3, -12, -14, -19, alongside increased TIMP-1

levels within obese adipose samples, reflecting dynamic matrix

restructuring (81). While obesity shifts MMP/TIMP (tissue

inhibitor of metalloproteinases) ratios toward enhanced

degradation, this compensatory response fails to prevent

progressive fibrosis (82). Multiple matrix components including

distinct collagen types, fibronectin molecules, and hyaluronan

networks interact with cellular receptors such as integrins and

Cluster of differentiation 44 (CD44), activating signaling cascades

that regulate cellular metabolism and inflammatory pathways (324).

Research demonstrates that adipocyte differentiation requires
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coordinated matrix remodeling, as experimental MMP inhibition

disrupts normal adipogenesis (82). Detailed characterization of

matrix regulation pathways (Table 6) suggests therapeutic

opportunities through targeted modification of specific matrix

components and their regulatory enzymes.

4.13.2 Mechanical stress
Mechanical testing demonstrates increased tissue stiffness that

limits adipocyte expansion and triggers mechanotransduction

through focal adhesion complexes (327, 328). Research demonstrates

that adipocytes sense elevated matrix rigidity through

mechanosensitive pathways, resulting in increased pro-fibrotic gene

transcription and accelerated matrix protein synthesis. These

mechanical signals operate via organized actin cytoskeletal networks

and mechanosensitive transcription factors, particularly the (Yes-

associated protein/Transcriptional coactivator with PDZ-binding

motif (YAP/TAZ) complex (329). Expanding adipose depots develop

localized hypoxia that activates hypoxia-inducible factor 1- a (HIF-

1a)-dependent signaling cascades, establishing self-perpetuating cycles
of matrix accumulation. These matrix modifications propagate beyond

AT to influence systemic metabolism, demonstrating the central role of

matrix remodeling in obesity pathophysiology (325).

4.13.3 Fibrosis development
Matrix protein dynamics emerge as key determinants of AT

plasticity during metabolic disease progression. Studies reveal that

obesity-driven matrix deposition creates fibrotic microenvironments

that sustain inflammatory responses and compromise insulin

signaling pathways (83). Analysis shows that metformin modulates

metabolism through AMPK activation acrossmultiple tissues, though

the precise mechanisms linking AMPK activation to improved

insulin sensitivity remain an area of active investigation (331).

Metformin treatment actively suppresses matrix buildup and fat

tissue scarring that typically accompany obesity-driven insulin

resistance, operating through multiple cellular mechanisms. At the

molecular level, metformin triggers AMPK activation, which

interferes with TGF-b1/Smad3 signaling - a key driver of tissue

fibrosis. This interference reduces collagen formation and dials down

genes involved in the scarring process (332). Metformin also

modulates other critical pathways, dampening integrin/ERK

signaling, limiting matrix-degrading enzymes, and protecting

enlarged fat cells from premature death (334). These molecular

mechanisms help maintain appropriate matrix elasticity during

tissue expansion (328). Additionally, AMPK pathway activation in

AT suppresses inflammatory signaling networks while improving

insulin sensitivity (333). The demonstrated effects of metformin on

both AMPK signaling and matrix remodeling provide multiple

therapeutic targets for treating obesity-related metabolic disorders.
4.14 The role of autophagy in AT function
and metabolic disorders

Autophagy maintains AT homeostasis by regulating adipocyte

development, metabolism, and inflammatory status. This cellular
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recycling pathway removes damaged proteins and organelles,

supporting proper cell function. Impaired autophagy in AT drives

metabolic disease. Studies link autophagy defects to obesity and

insulin resistance. The progression to T2DM accelerates when

autophagy fails (335–337).

Autophagy regulates adipose function through distinct

mechanisms. It controls lipid droplets via lipophagy pathways.

The process degrades specific proteins to modulate adipokine

release. Mitochondrial quality depends on mitophagy-mediated

turnover. Mouse models reveal the metabolic impact of

autophagy. Adipose-specific deletion of Atg7 reduces white fat

mass. These mice show poor adipogenesis and whole-body

insulin resistance (338, 339).
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Obese AT exhibits heightened autophagy markers, yet

suppressing this pathway yields metabolic benefits (340). While

obesity initially triggers increased autophagy as an adaptive

response, chronic metabolic stress leads to autophagy

dysfunction. Single-cell transcriptomics and proteomics studies

reveal that suppressing excessive autophagy in established obesity

paradoxically improves metabolic outcomes by reducing

inflammatory activation. The autophagic machinery influences

adipocyte phenotype transitions between white and brown states,

affecting whole-body energy balance (341). Understanding

autophagy regulation in mature fat cells remains incomplete,

highlighting the need for mechanistic studies to guide

therapy development.
TABLE 6 Molecular architecture of matrix remodeling in obese AT.

Regulatory
component

Expression pattern Molecular function Metabolic impact References

ECM Structural Components

Fibrillar Collagens
Increased 2–3 fold
in obesity

• Forms rigid scaffold structure
• Modifies tissue mechanics
• Alters mechanotransduction

• Limits adipocyte expandability
• Promotes inflammatory signaling
• Impairs metabolic flexibility

(81, 325, 326)

Collagen VI
2–3 fold upregulation in
obese AT

• Modifies pericellular matrix
• Activates inflammatory pathways
• Alters mechanical properties

• Enhances fibrosis
• Promotes insulin resistance
• Impairs adipogenesis

(81, 83, 326)

Mechanical Sensors

YAP/TAZ Complex
Activated by
matrix stiffening

• Responds to mechanical stress
• Controls fibrotic gene expression
• Regulates adipocyte function

• Promotes fibrosis
• Alters adipocyte differentiation
• Modifies metabolic function

(325, 327–329)

Matrix-Modifying Enzymes

MMPs (2, 3, 12, 14, 19) 2–5 fold increase in obesity
• Degrades ECM components
• Regulates matrix turnover
• Releases bioactive factors

• Modifies tissue architecture
• Influences adipogenesis
• Affects metabolic function

(81, 82)

TIMP-1
2–3 fold elevation
in obesity

• Inhibits MMP activity
• Controls matrix turnover
• Regulates tissue remodeling

• Promotes matrix accumulation
• Contributes to fibrosis
• Affects metabolic health

(81, 83, 330)

Metabolic Regulators

AMPK Decreased in obesity
• Suppresses fibrosis
• Regulates metabolism
• Controls inflammation

• Improves insulin sensitivity
• Reduces inflammation
• Maintains ECM homeostasis

(331–333)

Microenvironment Modifiers

HIF-1a Increased in obese AT
• Responds to hypoxia
• Induces fibrotic response

• Promotes matrix accumulation
• Enhances inflammation
• Impairs metabolic function

(81, 83, 325)

Cell Surface Receptors

Integrins/CD44
Altered expression
in obesity

• Sense matrix properties • Transduce
mechanical signals
• Mediate cell-ECM interaction

• Affect cellular metabolism
• Influence inflammation
• Modify tissue function

(325, 326, 334)
This table systematically categorizes the key molecular components regulating AT matrix remodeling during obesity. Components are organized by functional categories (structural, mechanical
sensors, modifying enzymes, metabolic regulators, microenvironment modifiers, and cell surface receptors), with quantitative changes in expression/activity provided where documented in
research. The analysis reveals coordinated regulation between matrix structural elements, their modifying enzymes, and associated signaling pathways. Notably, obesity-associated changes in
these pathways (2–5 fold changes in key regulators) create interconnected feedback loops affecting tissue architecture, inflammatory status, and metabolic function. Understanding these
relationships is crucial for developing targeted therapeutic strategies for obesity-related metabolic dysfunction. Each component’s molecular functions and metabolic impacts are presented to
demonstrate how local tissue remodeling influences systemic metabolic health. ECM, Extracellular Matrix; YAP/TAZ, Yes-Associated Protein/Transcriptional Coactivator with PDZ-binding
motif Complex; MMPs, Matrix Metalloproteinases; TIMP-1, Tissue Inhibitor of Metalloproteinases-1; AMPK, AMP-Activated Protein Kinase; HIF-1a, Hypoxia-Inducible Factor 1-Alpha;
Integrins/CD44, Integrins/Cluster of Differentiation 44.
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Defective autophagy pathways alter adipocyte differentiation,

lipid handling, and insulin responses (335). Body fat distribution

patterns, especially visceral depot expansion, compound these

metabolic perturbations. This inflammatory state within AT raises

the likelihood of developing metabolic diseases, including insulin

resistance and cardiovascular problems (342). The autophagic

machinery helps regulate immune responses at multiple levels -

from bacterial clearance to immune cell activation and

inflammatory mediator production (343). When autophagy fails,

inappropriate inflammatory activation accelerates disease

progression (344). Sustained inflammation suppresses autophagy

function, establishing self-perpetuating pathological cycles (345). In

acute kidney injury models, autophagy attenuates inflammatory

damage via mTOR and AMPK signaling networks (346). Clinical

intervention strategies targeting autophagy - through dietary

modification, exercise programs, and drug development - aim to

restore AT health and metabolic function.
4.15 Metabolic regulation by adipose-
derived extracellular vesicles

Secretion of extracellular vesicles (EVs) fromWAT represents a

key mechanism in metabolic regulation between organs (347, 348).

Analysis of vesicular content has identified specific metabolic

enzymes and adipose hormones, alongside regulatory RNAs that

influence target cell signaling pathways (349, 350).

Electron microscopy coupled with nanoparticle tracking

analysis distinguishes vesicle subpopulations through unique

biophysical properties and specific protein markers. Endosomal

sorting complex required for transport (ESCRT)-dependent

exosome formation generates 30–150 nm particles characterized

by CD63, CD81, and tumor susceptibility gene 101 (TSG101)

expression. Calcium-dependent membrane budding produces

larger 100–1000 nm microvesicles expressing annexin V and

selectins. Membrane phospholipid redistribution during apoptosis

yields >1000 nm apoptotic bodies marked by phosphatidylserine

externalization (351). Each population exhibits distinct membrane

protein topology and internal cargo composition, allowing targeted

isolation and characterization. These distinct vesicle populations

serve unique roles in intercellular communication and

metabolic regulation.

The vesicular miRNA cargo plays a crucial role in metabolic

regulation. Studies investigating vesicular RNA content have

demonstrated functional consequences in metabolic tissues.

Through direct modulation of glucose transporter expression,

miR-222 regulates skeletal muscle metabolism, concurrent with

miR-23b-mediated effects on insulin signaling proteins (350, 352).

The resulting perturbations in glucose homeostasis and hepatic

lipid handling establish a mechanistic framework for vesicle-

mediated metabolic regulation (350, 353).

Obesity alters both the protein composition and signaling

effects of adipose-derived vesicles. Mass spectrometry has

identified increased inflammatory mediators and decreased

adiponectin levels, along with changes in lipid transport proteins
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(351, 354). These alterations promote inflammatory responses in

AT and disrupt glucose homeostasis in liver and muscle (348). The

dysregulation of vesicle secretion and composition represents a

fundamental mechanism linking obes i ty to systemic

metabolic dysfunction.

Pathological changes in adipocytes influence vesicle

composition through specific molecular mechanisms (351).

Hyperglycemia-stressed adipocytes release vesicles enriched in

pro-inflammatory miRNAs that activate macrophage responses

and tissue inflammation. These vesicles interact with cellular

targets through EphB2-ephrinB1 binding, affecting insulin

signaling and lipid trafficking pathways (350). BAT vesicles show

unique properties through miR-92a and BMP7 enrichment,

supporting thermogenic programming and metabolic balance

(355). The differential regulation of vesicle production and

content between white and BAT highlights their specialized roles

in metabolic control.

The molecular characteristics of adipose-derived vesicles enable

their use as diagnostic tools and therapeutic vectors in metabolic

disease management (356). Their composition serves as biomarkers

for metabolic syndrome, cardiovascular disease, and cancer

progression (357). Clinical applications include longitudinal

disease monitoring and therapeutic response assessment (358).

Current research focuses on engineering vesicles for targeted drug

delivery and metabolic modulation through cargo manipulation.

These tissue-specific modifications provide mechanistic insights

while suggesting novel therapeutic approaches for metabolic

disorders. The development of standardized isolation protocols

and stability enhancement methods addresses key challenges in

clinical translation.
5 Systemic impact of adipose
dysfunction

AT dysfunction serves as the primary driver of systemic

metabolic dysregulation, orchestrating metabolic perturbations

across liver, skeletal muscle, pancreas, and other organs through

integrated molecular mechanisms. The following sections detail

how compromised AT propagates dysfunction through altered

adipokine secretion, excessive free fatty acid release, inflammatory

mediator production, and EV signaling, establishing self-

perpetuating cycles that progressively worsen whole-body

metabolic homeostasis.
5.1 Endocrine disruption

5.1.1 Adipokine dysregulation
Beyond storing energy, AT actively produces proteins called

adipokines. These factors act throughout the body, profoundly

affecting metabolism, immune function, and insulin signaling

pathways (359, 360). Within healthy AT, specific adipokines work

together to regulate appetite, energy use, and tissue responses to insulin

(361). AT produces several metabolically critical proteins, including the
frontiersin.org

https://doi.org/10.3389/fendo.2025.1592683
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bou Matar et al. 10.3389/fendo.2025.1592683
energy-regulating hormone leptin and the insulin-sensitizing factor

adiponectin. Additional secreted factors like resistin, visfatin, and

retinol binding protein 4 (RBP4) also shape metabolic outcomes.

Targeted gene deletions in mouse models highlight their unique

functions - leptin knockouts develop severe obesity with decreased

energy expenditure, while mice lacking adiponectin exhibit profound

insulin resistance. Similarly, genetic ablation of resistin, visfatin or

RBP4 leads to complex changes in inflammatory signaling networks

and systemic glucose regulation (361, 362).

Obesity and T2DM trigger pronounced alterations in AT

structure and function, disrupting normal adipokine production

patterns (363). Recent studies demonstrate depot-specific adipokine

secretion patterns, with visceral fat showing distinct inflammatory

profiles compared to subcutaneous deposits. These depot-specific

differences contribute significantly to metabolic outcomes. The

resulting secretory profi le shows suppressed levels of

metabolically protective factors like adiponectin alongside

increased inflammatory mediators TNF-a and IL-6 (2, 250). This

adipokine imbalance initiates and maintains chronic low-grade

inflammation, progressively impairing insulin signaling across

multiple tissue beds (175).

The inflammatory adipokines resistin and visfatin compromise

metabolic health through multiple mechanisms: disrupting IR

activation, amplifying inflammatory protein production, and

perturbing glucose homeostasis (360). These molecular

derangements create recurring cycles of metabolic dysfunction

and inflammation. Given their central regulatory roles, adipokine

pathways represent attractive therapeutic targets for obesity-related

disorders. Current therapeutic development focuses on strategies to

normalize adipokine profiles through direct pathway modulation or

broader improvements in AT function.

5.1.2 Hormone resistance
Adipose dysfunction manifests through cellular defects and

altered tissue architecture. Limited formation of new adipocytes

leads to pathological expansion of existing fat cells, reducing lipid

storage capacity (364). Tissue hypoxia develops alongside reduced

blood vessel formation, triggering inflammatory cascades (365).

Analysis of subcutaneous fat reveals altered BMP-4 signaling

networks and increased gremlin-1 protein levels in hypertrophic

obesity (366, 367). These molecular alterations modify adipokine

production profiles, enhance lipolytic activity, and maintain chronic

inflammatory states (342).

Loss of IR signaling in fat cells triggers lipase activation, with

increased hydrolytic activity. The resulting release of stored lipids

promotes fat accumulation in nonadipose organs, disrupting

metabolic homeostasis. Ectopic lipid deposition in liver, skeletal

muscle, and pancreatic tissue progressively impairs systemic glucose

regulation and insulin sensitivity (368).

5.1.3 Metabolic consequences
Pro-inflammatory signals block insulin pathways (4), while

hypertrophic fat cells show reduced metabolic responses and

trigger fat accumulation in other tissues (369). Inflammatory

mediators, oxidative damage, and excess lipids suppress adipocyte
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formation (364). The limitation in adipose expansion drives

metabolic disease progression through multiple mechanisms.

Macrophages and T lymphocytes within AT suppress formation

of new adipocytes while stimulating connective tissue production.

The resulting accumulation of collagen and other matrix proteins

creates physical constraints on AT growth and cellular

differentiation. Local tissue inflammation and matrix remodeling

establish a microenvironment that perpetuates dysfunction through

impaired adipogenesis (370).
5.2 AT receptor networks and metabolic
regulation

AT receptor systems form interconnected signaling networks

that regulate metabolic responses. Severe metabolic disruption and

lipodystrophy emerge when insulin receptor (IR) or insulin-like

growth factor 1 receptor (IGF1R) signaling fails, highlighting their

central role in adipose development (371). Beyond simple fat

storage, AT demonstrates remarkable plasticity through two

distinct growth mechanisms. While both hyperplastic and

hypertrophic expansion increase adipose mass, new adipocyte

formation through hyperplasia appears to preserve metabolic

health during obesity (372). AT dysfunction manifests when

expansion limits are reached, forcing lipid accumulation in non-

ATs and triggering systemic metabolic deterioration (37, 261).

TLR2 and TLR4 expression patterns shift dramatically in obese

AT, establishing these pattern recognition receptors as central

inflammatory mediators. Beyond pathogen sensing, these

receptors respond to elevated fatty acids and other obesity-

associated molecular signals (373). Subsequent NF-kB pathway

activation drives macrophage recruitment and amplifies

inflammatory cytokine production (374). This inflammatory

cascade particularly affects visceral fat deposits, which show

heightened susceptibility compared to subcutaneous stores.

AT dysfunction orchestrates systemic metabolic perturbations

through distinct molecular mechanisms targeting peripheral

organs. Dysfunctional adipocytes release excessive FFAs through

uncontrolled lipolysis, which directly impair hepatic insulin

signaling by inducing diacylglycerol accumulation and protein

kinase C (PKC) activation, leading to hepatic steatosis and

gluconeogenesis dysregulation (8, 375). In skeletal muscle, these

circulating FFAs promote intramyocellular lipid accumulation,

disrupting insulin-stimulated glucose uptake through ceramide-

mediated inhibition of Akt phosphorylation (376, 377). Moreover,

aberrant adipokine secretion profiles, characterized by elevated

TNF-a and IL-6 alongside diminished adiponectin, propagate

inflammatory signaling that impairs both hepatic and muscle

insulin sensitivity (175, 378). Adipose-derived EV carrying

specific miRNA signatures (miR-222, miR-23b) further mediate

inter-organ communication, directly altering glucose transporter

expression in skeletal muscle and lipid metabolism in hepatocytes

(350, 352). This molecular crosstalk establishes a self-perpetuating

cycle where adipose dysfunction progressively compromises

peripheral tissue metabolic homeostasis.
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PPARs regulates complex metabolic networks while directing

adipocyte differentiation programs (379). Chromatin landscape

remodeling by PPARg proves essential for adipogenesis (380).

These nuclear receptors undergo sophisticated post-translational

control, with disrupted modifications linked to obesity and

metabolic dysfunction (381, 382). Each PPAR subtype serves

specialized metabolic functions - PPARa coordinates fatty acid

oxidation pathways while PPARb/d enhances lipid metabolism

(383). Pharmacological modulation of PPAR receptors represents

a therapeutic avenue for metabolic disease intervention, though

challenges remain in targeting specificity (384). Within AT,

complex signaling networks emerge from adipocyte and

macrophage interactions, generating localized inflammation

marked by specific immune cell populations and altered cytokine

profi les (385). The resulting metabolic stress triggers

phosphorylation cascades through several pathways. Experimental

evidence points to IKK/NF-kB signaling as a central mediator, while

PI3K/Akt and MAP kinase activation leads to serine/threonine

modifications of insulin receptor substrates (IRSs), ultimately

disrupting glucose homeostasis (386). Pattern recognition

receptors and inflammasome complexes sustain this inflammatory

state (69). Disrupted adipokine secretion patterns and altered lipid

handling further compound insulin resistance development.

Anatomically distinct fat deposits display unique receptor

expression patterns and metabolic properties. Upper body and

visceral deposits correlate with increased metabolic risk, while

gluteofemoral fat appears protective (387). These depot-specific

differences stem from varied cellular composition, gene regulatory

networks, and physiological functions - including distinct steroid

receptor profiles, adipokine signatures, and metabolic activities

(388, 389). Recent work has expanded this heterogeneity concept

to brown, beige, and ectopic fat, with each depot’s molecular profile

differently impacting systemic metabolism (390, 391).
5.3 Distinct mechanisms of adipocyte
elimination in metabolic disease

AT undergoes several forms of cellular elimination under

metabolic stress: mitochondrial-dependent apoptotic pathways,

inflammatory cell death via receptor-interacting serine/threonine-

protein kinase 3 (RIPK3)/Mixed lineage kinase domain-like protein

(MLKL) signaling, and inflammasome-triggered membrane

disruption through specific molecular cascades (84). High-

resolution microscopy demonstrates characteristic morphological

changes: distended ER, damaged mitochondrial networks, and

oxidative modifications within hypertrophied adipocytes. These

conditions promote NLRP3 inflammasome assembly, triggering

caspase-1 activation and subsequent plasma membrane

permeabilization (85). Infiltrating macrophages organize around

dying adipocytes, forming characteristic inflammatory structures

termed crown-like structures (CLS) within affected regions (86).

During cell death, released cellular components - including DNA

fragments, bioactive lipids, and pro-inflammatory mediators -

amplify both local and systemic metabolic disruption through
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well-defined pathways (392). Adipocyte survival regulation

involves intricate crosstalk between death receptor signaling and

mitochondrial pathways.

The consequences of adipocyte death extend beyond local tissue

dysfunction, driving organ-specific metabolic disruptions through

precisely characterized molecular pathways. Released cellular

components from dying adipocytes, including mitochondrial

DNA fragments and oxidized lipids, trigger hepatic Kupffer cell

activation via TLR9 signaling, promoting liver inflammation and

fibrosis (393). In skeletal muscle, these damage-associated

molecular patterns activate resident macrophages, inducing

myocyte insulin resistance through paracrine IL-1b secretion

(394). Furthermore, the compensatory hyperinsulinemia resulting

from adipose dysfunction stimulates de novolipogenesis in

hepatocytes while simultaneously impairing muscle glucose

uptake, creating a pathological metabolic state that propagates

systemic insulin resistance (157). Advanced imaging studies

demonstrate that adipocyte-derived ceramides specifically

accumulate in hepatic and muscle tissue, directly inhibiting

insulin receptor substrate phosphorylation and disrupting

mitochondrial function (395, 396). Key molecular executioners,

particularly caspase-1 and MLKL, orchestrate distinct death

programs through specific biochemical mechanisms (397). These

detailed molecular insights suggest new therapeutic approaches.

Adipocyte elimination triggers extensive signaling network

perturbations. Specific molecular signals from dying cells guide

macrophage recruitment and inflammatory focus development.

Notably, adipocyte size expansion beyond critical thresholds

activates death pathways even in lean tissue by compromising

phosphatidylserine-dependent clearance mechanisms. Recruited

macrophages secrete elevated levels of TNF-a and IL-6 through

persistent NF-kB activation (398, 399). The combination of altered

adipokine profiles and disrupted adipogenic transcription

compromises metabolic homeostasis (141). Continuous cycles of

cell death and immune cell accumulation create an inflammatory

environment that impairs insulin signaling (86). This adipose

dysfunction increases lipid flux to peripheral organs, particularly

through portal circulation to the liver, accelerating broader

metabolic disease progression (400).
6 Molecular mechanisms of age-
related AT dysfunction: from cellular
senescence to systemic impact

Advancing age fundamentally alters AT biology, initiating

molecular and cellular cascades that drive metabolic perturbations

and age-associated pathologies. Primary mechanistic drivers

encompass adipogenic dysregulation, cellular senescence

programs, and aberrant adipokine signaling networks (401, 402).

The senescence-associated secretory phenotype (SASP) emerges as

a central regulator, propagating chronic inflammatory states and

metabolic dysfunction (403). Age progression correlates with

significant adipose depot redistribution patterns, coupled to

accumulation of senescent cell populations and progressive
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mitochondrial deficits (404). These alterations manifest across

diverse adipose-resident cell populations - mature adipocytes,

immune cell subsets, and progenitor compartments (405) -

culminating in systemic inflammatory activation, insulin

resistance development, and accelerated aging phenotypes (406).

Current therapeutic strategies targeting these age-related

perturbations include senolytic compounds, nutritional

interventions, physical activity protocols, and heterochronic

parabiosis approaches (407).

At the molecular level, Sirtuins (silent mating type information

regulation 2 homolog) emerge as crucial regulators in this complex

landscape. These NAD+-dependent deacetylases coordinate AT

function and metabolism during aging and obesity (408).

Through precise regulation of lipid metabolism, inflammation,

and fibrosis in AT, sirtuins fundamentally shape energy

homeostasis and metabolic health (409). The aging process

modulates AT function through sirtuin-dependent pathways,

driving changes in fat distribution, adipogenesis, and

inflammatory responses (401). SIRT1 activation enhances fatty

acid oxidation and lipid mobilization, potentially protecting

against obesity-linked metabolic disorders (410). Notably, obesity

disrupts both adipose NAD+homeostasis and sirtuin enzymatic

function, leading to mitochondrial deficits and metabolic

complications (411).

The aging process induces dramatic changes in AT distribution

and function, with significant systemic consequences. A hallmark of

these changes is the reduction in subcutaneous fat accompanied by

an increase in visceral fat and ectopic lipid deposition (412). The

cellular composition of aging AT undergoes substantial alterations,

characterized by diminished preadipocyte function and increased

presence of senescent cells (401). These changes manifest in

impaired adipogenesis, persistent inflammation, and dysregulated

adipokine production, all contributing to insulin resistance and

metabolic disorders (407). The decline in BAT activity with age

further compromises metabolic homeostasis (406), although some

fat redistribution patterns may serve protective functions in

extreme old age (413).

Aging leads to notable alterations in the regulation of

adipogenesis at the transcriptional level. Studies indicate a decline

in the expression of essential adipogenic regulators such as C/EBPa
and PPARg, alongside an elevation in inhibitory factors, including C/

EBPb-LIP and CHOP (414, 415). These changes occur alongside

alterations in miRNA regulation, particularly miR-143, which affects

the ERK5-PPARg axis crucial for adipocyte differentiation (416).

Accumulated oxidative stress in aging AT impairs preadipocyte

differentiation through cell cycle regulatory disruption (417), while

enhanced SASP factor and proinflammatory cytokine production

sustains chronic inflammation and insulin resistance (401).

Cellular senescence programming, characterized by permanent

cell cycle arrest and SASP development, represents a fundamental

mechanism driving age-related adipose dysfunction. SASP

encompasses secretion of diverse factors - inflammatory mediators,

growth factors, and matrix components (418) - regulated through

NF-kB, C/EBPb, and Janus kinase/Signal transducer and activator of

transcription (JAK/STAT) signaling networks (419, 420). While
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SASP activation supports tumor suppression and tissue repair

processes, it simultaneously promotes chronic inflammatory states

and age-related functional decline (421). JAK pathway targeting

presents therapeutic potential for addressing SASP-mediated

inflammation and frailty in aging populations (422), driving

research into SASP-modulating therapeutic approaches including

senolytic and senomorphic compounds (423).

The systemic impact of age-related AT dysfunction extends

beyond local effects, contributing to widespread metabolic

dysfunction and chronic low-grade inflammation (401). These

changes encompass fat deposit redistribution, reduced

adipogenesis, senescent cell accumulation, and altered immune

cell composition (424). The dysregulated secretion of adipokines

leads to insulin resistance and increased inflammation (406), while

the intricate interplay between AT and the immune system becomes

crucial in age-related metabolic decline, mirroring patterns

observed in obesity (425). The disruption of inter-organ

communication due to AT dysfunction accelerates the aging

process and increases metabolic disease risk (426). Notably, both

obesity and aging share key features in AT, including elevated

visceral-to-subcutaneous fat ratios and pro-inflammatory immune

cell phenotypes (Figure 1) (427).
7 Therapeutic advances in metabolic
AT dysfunction

AT thermogenesis presents a compelling therapeutic avenue for

obesity and metabolic disorders. Brown and beige adipocytes drive

energy expenditure through UCP1-mediated non-shivering

thermogenesis, with activation achievable via cold exposure, b3-
adrenergic receptor agonists, or exercise-induced pathways (428,

429). While BAT activation demonstrates significant metabolic

benefits in experimental models, sustained clinical weight loss

remains challenging, and cardiovascular complications continue

to limit therapeutic applications (428). Current therapeutic

development encompasses multiple parallel approaches: novel

pharmacological agents targeting thermogenic pathways, cell-

based interventions to enhance brown adipose function, and

genetic modifications designed to amplify thermogenic capacity in

existing AT (430).

Adipokine signaling modulation represents another key

therapeutic direction in metabolic disease treatment. Leptin

sensitization strategies combat cellular resistance mechanisms,

while newly developed adiponectin mimetics boost insulin

sensitivity and reduce inflammatory cascades throughout

metabolic tissues. The therapeutic targeting of adipokines has

yielded particularly promising results for obesity-related

metabolic conditions (431). These approaches span multiple

molecular interventions: engineered adiponectin mimetics,

synthetic leptin sensitizers, and targeted anti-inflammatory

compounds, each aiming to recalibrate adipokine signaling

networks and downstream metabolic parameters (432, 433).

Modifying the adipose inflammasome architecture and tissue-

specific inflammatory pathways shows substantial potential for
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attenuating chronic inflammation and restoring metabolic

equilibrium across multiple tissue types.

Recent genetic and RNA-based therapeutic approaches have

advanced substantially in treating metabolic dysfunction. CRISPR-

Cas9 applications include generating precise lipid gene knockouts

and enhancing human adipocyte browning capacity, demonstrating
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significant metabolic improvements in preclinical models (434).

Targeted CRISPR interference against FABP4 expression in WAT

reduces obesity progression and inflammatory markers in murine

models (435). RNA therapeutics, including modified antisense

oligonucleotides and siRNA constructs, show particular efficacy in

modulating genes central to lipoprotein metabolism (436, 437).
FIGURE 1

Age-related AT dysfunction arises through dysregulation of diverse molecular pathways. The schematic illustrates cellular stress responses including
protein misfolding within the ER, compromised mitochondrial oxidative phosphorylation, and accelerated cellular senescence programs. Extensive
ECM remodeling alters tissue architecture while impaired progenitor populations severely limit regenerative capacity. Complex metabolic
perturbations emerge through increased PPAR-g signaling cascades coupled with defective lipid oxidation pathways. Pathological fat redistribution
occurs through visceral and ectopic lipid accumulation alongside progressive subcutaneous depot depletion. Adipocyte hypertrophy predominates
over healthy hyperplastic expansion due to compromised progenitor function. Systemic metabolic dysregulation manifests through altered insulin
sensitivity, disrupted NAD+ metabolism, and impaired mitochondrial function. The resultant disruption of glucose regulation and energy homeostasis
promotes cardiometabolic disorders including T2DM and NAFLD through mechanisms spanning cellular to organismal scales. These molecular and
physiological changes create integrated pathways of dysfunction affecting multiple metabolic systems.
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Advanced lipid nanoparticle delivery systems extend therapeutic

possibilities beyond traditional hepatic targets, enabling tissue-

specific intervention (438).

Diacylglycerol acyltransferase (DGAT) enzymes regulate

triglyceride synthesis and lipid metabolism through multiple cellular

pathways. DGAT inhibition shows therapeutic potential by limiting

triglyceride synthesis and storage in metabolic tissues (439). PPARa
and AMPK activation enhances fatty acid oxidation rates, reducing

ectopic lipid accumulation across tissues. PPARa forms functional

heterodimers with RXRb to activate numerous genes involved in fatty

acid oxidation cascades. Polyunsaturated fatty acids serve as natural

PPAR activators through direct binding interactions (440). PPARb/d
activation prevents high-fat diet-induced AMPK suppression and

amplifies the PGC-1a-Lipin 1-PPARa signaling axis, substantially

boosting fatty acid oxidation capacity (441). Current clinical

applications include Fibrates for PPARa activation and TZDs as

PPARg agonists in dyslipidemia and diabetes treatment protocols.

Multipotent stem cells derived from AT have proven valuable in

regenerative therapy. These ADSCs differentiate along distinct lineages

- producing adipocytes, osteocytes, chondrocytes, and neurons under

controlled conditions (442). The advantageous accessibility of ADSCs

throughminimally invasive lipoaspiration protocols distinguishes them

from conventional mesenchymal stem cell sources (443). Their

therapeutic mechanism encompasses both immunomodulatory

functions and targeted trophic factor secretion, which synergistically
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enhance tissue repair processes (444). While clinical studies have

validated ADSC efficacy across multiple pathological conditions

(445), fundamental questions persist regarding lineage-specific

differentiation mechanisms and delivery optimization. Elucidating the

molecular determinants of cell fate decisions and characterizing the

temporal dynamics of ADSC-mediated tissue regeneration remains

crucial for therapeutic advancement. Contemporary investigations

concentrate on decoding the complex interplay between signal

transduction networks , chromatin modifications, and

microenvironmental cues that regulate ADSC functionality across

diverse therapeutic applications.

Nutritional interventions targeting Polyunsaturated fatty acids

(PUFAs) and gut microbiota demonstrate substantial metabolic

benefits through multiple mechanisms. Omega-3 PUFAs reduce AT

inflammation, enhance cellular energy metabolism, and upregulate

BAT thermogenic markers through direct and indirect pathways

(446). These compounds modify gut microbiota composition

through specific prebiotic effects on bacterial populations (447).

Probiotic and prebiotic interventions favorably alter host lipid

metabolism and tissue fatty acid profiles across multiple organ

systems (448). Omega-3 PUFA supplementation improves

circulating lipid profiles, glycemic control parameters, and hepatic

fat content in various metabolic disorders. Individual genetic

background and obesity status significantly influence intervention

efficacy, necessitating personalized therapeutic approaches.
FIGURE 2

Therapeutic strategies for AT dysfunction. Key therapeutic approaches for addressing dysfunctional AT.
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Molecular analyses of FGF21 and GLP-1 pathways underscore

their central roles in metabolic control. Laboratory analyses of

FGF21 demonstrate multifaceted effects on hepatic glucose

output, AT lipid handling, and whole-body energy expenditure

(449). Administration of engineered FGF21 variants yields

metabolic improvements spanning glycemic control, lipid

homeostasis, and body weight regulation in species ranging from

mice to nonhuman primates (450). Recent clinical trials combining

GLP-1 pathway activators with modified FGF21 molecules and

thyroid receptor b-selective compounds show enhanced efficacy

against fatty liver disease, suggesting pathway convergence in

metabolic regulation (451).

The accumulation of senescent cells emerges as a critical factor in

age-related metabolic decline. These cells, characterized by permanent

cell cycle arrest, establish inflammatory microenvironments within

adipose and other metabolic tissues. Elimination of senescent cell

populations through targeted molecular approaches improves glucose

homeostasis and insulin action in experimental obesity models (452).

Evidence from aged mouse studies demonstrates that senescent cell

removal enhances both metabolic parameters and physical function

(453). Senolytic therapy shows particular promise for treating obesity-

related metabolic dysfunction and numerous T2DM complications

through senescent cell clearance (454, 455).

AT mitochondrial dysfunction correlates strongly with obesity

progression and T2DM development, significantly affecting

adipocyte differentiation capacity, cellular lipid metabolism, and

insulin signaling responses. Mitochondrial function enhancement

through targeted antioxidant compounds and exercise protocols

improves multiple metabolic parameters (456). Complex autophagy

and mitophagy pathways maintain essential adipocyte function and

cellular identity. Novel antifibrotic agents target obesity-associated

AT fibrosis, which contributes substantially to metabolic

dysfunction through altered tissue architecture (457).

These therapeutic approaches target multiple fundamental

aspects of adipose biology, including cellular energetics, lipid

metabolism pathways, inflammatory cascades, and essential cellular

maintenance processes. Combined, they represent significant

advances in treatment options for metabolic diseases and systemic

metabolic regulation across multiple tissue types and pathways

(Figure 2). Current clinical investigations explore multimodal

treatment combinations targeting severe metabolic disorders

through integrated pathway modulation. Ongoing research

continues to reveal additional molecular targets and regulatory

pathways crucial for metabolic disease treatment strategies.
8 Conclusion

AT dysfunction disrupts metabolic homeostasis through

complex interactions of cellular stress, inflammatory processes,

and regulatory mechanisms. Our analysis reveals critical

molecular pathways, including NF-kB and JNK signaling, that

fundamentally compromise metabolic function.

Inflammatory pathways and oxidative stress critically impact

metabolic health. Specific molecular markers like TNF-a, IL-6, and
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increased ROS demonstrate how AT depots generate unique

cellular responses that influence systemic metabolism.

Molecular alterations in receptor functionality, particularly IR

signaling and GLUT4 translocation, generate metabolic disruptions

through complex inter-organ communication. Adipokine interactions,

including dysregulated leptin and adiponectin profiles, reveal complex

signaling networks between AT and metabolic systems.

Emerging therapeutic strategies target specific molecular

mechanisms, including PPAR-g pathway modulation, BAT

activation through UCP1 targeting, AMPK pathway interventions,

senolytic approaches to eliminate dysfunctional adipose cells, and

precise genomic and RNA-based interventions.

Critical knowledge gaps persist in our understanding of AT

dysfunction, particularly regarding depot-specific molecular

heterogeneity, temporal dynamics of dysfunction progression, and

sex-specific differences in adipose pathophysiology. The field

requires comprehensive single-cell resolution mapping of AT

microenvironments, longitudinal studies tracking dysfunction

development from early metabolic stress to established disease,

and systems-level integration of multi-omics data to identify causal

relationships in metabolic regulation.

Key research priorities include: (1) elucidating the molecular

determinants of adipose depot specialization and their therapeutic

potential; (2) characterizing the temporal sequence of cellular

events during dysfunction progression to identify critical

intervention windows; (3) investigating sex hormone influences

on adipose immune cell trafficking and inflammatory resolution; (4)

developing novel imaging technologies for non-invasive assessment

of AT health; and (5) designing targeted delivery systems for

adipose-specific therapeutic agents that avoid systemic effects.

Future investigations should prioritize translational approaches

bridging mechanistic discoveries to clinical applications.

Personalized medicine strategies incorporating AT biomarkers,

genetic risk profiles, and metabolic phenotyping may enable early

intervention before irreversible dysfunction occurs. Integration of

artificial intelligence with multi-omics analyses could reveal

previously unrecognized regulatory networks and therapeutic

targets. Ultimately, addressing these knowledge gaps through

coordinated research efforts will advance our ability to combat

the global epidemic of metabolic disease.
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Vıćtor VM. Perspectives and potential applications of mitochondria-targeted
antioxidants in cardiometabolic diseases and type 2 diabetes. Med Res Rev. (2014) 34
(1):160–89. doi: 10.1002/med.2014.34.issue-1

91. Lee PL, Jung SM, Guertin DA. The complex roles of mechanistic target of
rapamycin in adipocytes and beyond. Trends Endocrinol Metab. (2017) 28:319–39.
doi: 10.1016/j.tem.2017.01.004

92. Yoon M-S. The role of mammalian target of rapamycin (Mtor) in insulin
signaling. Nutrients. (2017) 9(11):1176. doi: 10.3390/nu9111176

93. Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor
substrate-1: A novel target for the reversal of insulin resistance. Mol Endocrinol.
(2001) 15:1864–9. doi: 10.1210/mend.15.11.0725

94. Horwitz A, Birk R. Adipose tissue hyperplasia and hypertrophy in common and
syndromic obesity-the case of bbs obesity. Nutrients. (2023) 15(15):3445. doi: 10.3390/
nu15153445

95. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, et al.
Increased adipose tissue oxygen tension in obese compared with lean men is
accompanied by insulin resistance, impaired adipose tissue capillarization, and
inflammation. Circulation. (2011) 124:67–76. doi: 10.1161/CIRCULATIONAHA.
111.027813

96. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/
or hyperplasia: dynamics of adipose tissue growth. PloS Comput Biol. (2009) 5:
e1000324. doi: 10.1371/journal.pcbi.1000324

97. Boden G, Cheung P, Salehi S, Homko C, Loveland-Jones C, Jayarajan S, et al.
Insulin regulates the unfolded protein response in human adipose tissue. Diabetes.
(2014) 63:912–22. doi: 10.2337/db13-0906
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